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Abstract

This paper introduces TALP, a speech-to-speech statisti-
cal machine translation system developed at the TALP
Research Center (Barcelona, Spain). TALP generates
translations by searching for the best scoring path through
a Finite-State Transducers (FSTs), which models an X-
gram of the bilingual language defined by tuples. A de-
tailed description of the system and the core processes to
train it from a parallel corpus are presented. Results on
the Chinese-English supplied task of the Int. Workshop
on Spoken Language Translation (IWSLT’04) Evaluation
Campaign are shown and discussed.

1. Overview of the system

TALP (Traducció Automàtica del Llenguatge Parlat) is
a speech-to-speech statistical machine translation sys-
tem developed at the TALP Research Center (Barcelona,
Spain) during the last years. It implements an integrated
architecture by joining speech recognition and transla-
tion in one single step. Mathematically, the system pro-
duces a translation by maximizing the joint probability
between source and target languages, which is equivalent
to a language model of an special language with bilin-
gual units (called tuples). TALP implements this tuple
language model by means of a Finite-State Transducer
(FST) considering an Xgram memory, that is, a variable-
length N-gram model which adapts its length to evidence
in the data. Xgrams have proved good results in speech
recognition tasks in the past [1].

Given such a bilingual FST, the search for a transla-
tion becomes the search for the best-scoring path among
the transducer’s edges. This search can be performed by
dynamic programming, using well-known decoding tech-
niques from the speech recognition domain. This way,
the Viterbi algorithm and a beam search can be used for-
wards taking only source-language words into account
(first part of each tuple), reading words in the target lan-
guage during trace-back to produce the translation. Using
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Figure 1: A translation FST from Spanish to English

the same structure and search method, acoustic models
can be omitted to perform text translation tasks only.

This translation FST is learned automatically from
a parallel corpus in three main steps (and an optional
preprocessing). First, an automatic word alignment is
produced. Currently this is done by the freely-available
GIZA++ software [2], implementing well-known IBM
and HMM translation models [3, 4]. From this align-
ment, a tuple extraction algorithm generates the set tu-
ples that induces a sequential segmentation of both source
and target sentences. These tuples must respect word or-
der in both languages, as this is necessary for the trans-
ducer to produce a correct-order translated output. Fi-
nally, Xgrams are learned using standard language mod-
eling techniques. Previous publications on this system
include [5] and [6].

The organization of the paper is as follows. Section
2 offers an overview of the system architecture, whereas
sections 2 and 3 deepen into details on translation gen-
eration and training issues. Section 4 presents the exper-
imental framework used to evaluate the system, whose
results are discussed in section 5. Finally, section 6 con-
cludes and outlines future research lines.

2. Translation generation

Statistical machine translation is based on the assumption
that every sentence e in the target language is a possible
translation of a given sentence f in the source language.
The main difference between two possible translations of
a given sentence is a probability assigned to each, which
is to be learned from a bilingual text corpus. This prob-
ability can be modeled by a joint probability model of



source and target languages. In this case, solving the
translation problem is finding the sentence in the target
language that maximises equation 1. This probability can
be approximated by an Xgram of a joint or bilingual lan-
guage model, learned from a set of tuples, as expressed
in equation 2.

ê = arg max
e

{p(e, f)} = · · · = (1)

argmax
e

{
N∏

n=1

p((e, f)n|(e, f)n−1, ..., (e, f)n−X+1)}
(2)

where:

(e, f)n = (ein ...ein+In , tjn ...tjn+Jn)

TALP implements this Xgram language model by
means of finite-state transducer whose edges are labelled
with tuples (as shown in figure 1). That is, each edge
has a label that relates one or more words in the source-
language to zero, one or more words in the target lan-
guage. This way, some edges may have just one word in
the source language whereas others may have more, and
both be valid as long as the first word is equal to the in-
put. Bearing this in mind, all well-known ASR decoding
techniques can be used to find the best-scoring translation
of a given sentence, once the transducer is built.

In a speech-to-speech translation framework, input
data is the speech signal, so the objective of translation
becomes the search for the sentence e in the target lan-
guage the following equation:

ê = argmax
e

{p(e, f) · p(x|f)} (3)

where we introduce the acoustic model p(x|f) in the op-
timisation (x being the input acoustic signal). Therefore,
by following this transducer-based approach, the same
training and search techniques can be used to tackle both
text and speech translation tasks. The following section
goes into the details on how the FST is learned from a
parallel textual corpus.

The current architecture of the TALP translator per-
forms the search for the best translation in a monotonous
fashion. Any reordering of the target words is restricted
to the short region defined by the tuple. That is, it
can only be produced inside a tuple, which can contain
crossed alignment relationships. This poses a strong lim-
itation to the system, specially when dealing with pairs
of languages with long reorderings in word alignment,
such as Chinese and English. Several reordering tech-
niques have been tested with the FST architecture, none
of them providing significant results (for Spanish-English
case, see [6]).

Word Alignment

Xgram estimation

Embedded words dict.

Pre-processing

Parallel corpus

Tuples extraction

Figure 2: Training stages from a parallel corpus to a
translation FST

3. Training

Usual language model techniques can be used to learn
the tuples language model (X-gram) once a given parallel
corpus has been transformed into a set of tuples for each
sentence. In order to do so, the training of the system
comprises three basic stages (and an optional preprocess-
ing), which are shown in the flow diagram of figure 2.
These steps are described in the following subsections.

3.1. Preprocessing

The pre-processing stage is aimed at categorising words
in order to reduce output vocabulary, helping the align-
ment stage to increase accuracy, without reducing input
flexibility. Some basic word groups can be categorised,
namely personal names, names of cities, towns or coun-
tries (manually), and dates, times of the day and numbers
(automatically). With the X-gram software, these cate-
gories or word groups can be easily modelled by smaller
finite-state transducers that translate each of their possi-
ble alternative values.

However, this preprocessing is an optional and
language-dependent stage, according to the availability
of resources. In the frame of a Chinese-English transla-
tion task, only a small preprocessing has been performed.
As evaluation is performed without punctuation marks,
we experimented training without punctuation, but this
was discarded as results were equal or worse than leav-
ing punctuation until a final output post-processing.

On the other hand, a special segmentation of the train-
ing corpus was performed. Whenever a pair of Chinese-
English sentences shared the same number and type of
punctuation marks (considering ’.’ ’,’ and ’?’), these were



split according to the position of punctuation. That causes
the train corpus to have more and shorter sentences.

3.2. Word alignment

Assuming that the input parallel text in sentence aligned,
we perform a standard statistical word alignment stage
by using GIZA++, a freely-available software which im-
plements the so-called IBM alignment models presented
in [3] as well as the HMM-based alignment model [4],
producing the Viterbi alignment as an approximation to
the most probable one. Due to the asymmetric nature of
the resulting alignment (linking one word in the source
language to one or more words in the target language),
several symmetrization strategies can be used (such as the
union or the intersection between alignments in both di-
rections).

In our case, both the union and the intersection are
performed and can be also used to generate the set of tu-
ples, like the source-to-target (s2t) and target-to-source
(t2s) alignments.

3.3. Tuples extraction

Once the alignment is produced, the tuples extraction unit
has to build units so that the order of the sentence in
both languages is not violated, a necessary requirement
when dealing with finite-state translation transducers, as
already exposed in [7], because otherwise the transducer
would learn order-incorrect sentences. Given a sentence
pair and a corresponding word alignment, the sequential
set of tuples contains those pairs of m source words and
n target words satisfying these constraints:

1. It induces a monotonous segmentation of the pair
of sentences.

2. Words are consecutive along both source and target
sides of the tuple.

3. No word on either side of the tuple is aligned to a
word out of the tuple.

4. Each tuple cannot be decomposed into smaller
phrases without violating the previous constraint.

Note that this set is unique under these conditions [8].
The only ambiguity appears when a target word is aligned
to NULL, in which case we append it to the next tuple
(if exists, else to the previous). An example of the tuple
extraction process is drawn in figure 3.

When extracting tuples with more than one word in
each language (as the third tuple in figure 3), a certain lo-
cal reordering of the target is necessarily encoded. While
helping the system to avoid local reordering mistakes,
this strategy can suffer from an information loss, as the
source words appearing in this tuple may not have any

src: F

trg: E

f2
f3 f4 f5 f6f1

e2
e3 e4 e5 e6e1

(f1f2 , e1) (f3 , e2e3e4) (f4f5f6 , e5e6)
tuples:

T

Figure 3: Tuples extraction from an aligned sentence pair

translation if they do not appear elsewhere alone in a tu-
ple. We call these words embedded, as their translation
appears only embedded in a longer phrase.

To avoid this, we build up a dictionary of transla-
tions for embedded words from the most accurate word
alignment available. For a certain embedded word f j

and a given word alignment, we look for the target words
ei...ei+K that are most frequently aligned to fj with these
two conditions:

1. Target words ei...ei+K are consecutive in the target
sentence.

2. Target words are aligned only to fj or to null.

This way, we build up a statistical dictionary indepen-
dently of the non-monotonicity of the word alignment.
The entries of the dictionary are used as unigrams in the
bilingual model estimated by the FST. To create the dic-
tionary, all four aforementioned word alignments have
been tested for several translation tasks, and the intersec-
tion has consistently given better results, even though its
translations are always one-word.

This strategy is useful though not robust enough yet.
By building up the dictionary, we are able to produce
a word-by-word translations for some embedded words
whenever the sequence in the test sentence is not equal to
any training tuple. However, information on embedded
N-grams is not extracted at the moment. This has grow-
ing importance when dealing with very different pairs of
languages, in terms of word ordering, as with a Chinese-
English task. In section 4.3 the impact of this technique
is evaluated in practice.

3.4. Xgram estimation

Finally, given the parallel corpus described in a set of tu-
ples for each sentence, a Finite-State Transducer contain-
ing Xgram probabilities is learned. Usually, a maximum
length of 3 is used for memory, to avoid over-fitting to
training data. A back-off strategy is follow and a pruning
of the resulting automaton can be performed. Two pa-
rameters are used for this: on the one hand, the minimum
number of times a certain history (Xgram) must occur
to be considered. And on the other hand, two different
nodes sharing the same recent history are merged if the



divergence between their output probability distributions
is smaller than a certain threshold (see details in [1]).
Given the usual sparseness problems when dealing with
parallel corpora, the first parameter is not used (set to 1),
whereas the latter (hereafter referred to ’f’) performs a
slight pruning.

4. Experiment and results

The presented system has been evaluated in the frame-
work of the International Workshop on Spoken Lan-
guage Translation (IWSLT’04), a Satellite Workshop of
the Interspeech - ICSLP. In the workshop, an Evalua-
tion Campaign has been conducted for two translation
directions, namely Chinese-to-English and Japanese-to-
English. Moreover, two different tracks per direction
have been proposed, namely using only the supplied cor-
pus (supplied) and allowing the use of any additional data
for training purposes (unrestricted). Besides, an interme-
diate track allowing the use of the supplied corpus plus
certain linguistic resources available from LDC has been
proposed for the Chinese-English task.

TALP has participated only in the Chinese-to-English
supplied track, the reason being that we believe the
Japanese-to-English task to be even more demanding in
terms of reordering. As our system lacks any direct treat-
ment of long reorderings, we found that the Chinese-to-
English task brought up enough challenges for research.
Next, we present a brief description of the supplied cor-
pus, the evaluation measures used in the track and the
results achieved by two different TALP runs.

4.1. Chinese-to-English IWSLT’04 supplied corpus

Table 1 shows the main statistics of the supplied data,
namely number of sentences, words, vocabulary, and
maximum and average sentence lengths for each lan-
guage, respectively. The difference between ’Train set’
and ’Segmented train set’ is the segmentation discussed
in section 3.1. A development set of 506 sentences was
also supplied, together with 16 reference English transla-
tions. There are 160 unseen words in the development set
and 104 unseen words in the test set.

4.2. Evaluation measures

The output of the system is evaluated using automatic and
manual evaluation measures. For the automatic evalua-
tion, 16 man-made English reference translations of the
test corpus are used. The evaluation measures include
BLEU score, NIST score, mWER, mPER and GTM (gen-
eral text matcher).

As for human assessment, each translated sentence
is evaluated by three human judges, according to ”flu-
ency” and ”adequacy” of the translation. While fluency
indicates how the evaluation segment sounds to a na-
tive speaker of English, from ’Incomprehensible’ (1) to

supplied sent. words voc. Lmax Lavg

Train set
Chinese 182,904 7,643 69 9.1
English

20,000
188,935 8,191 75 9.4

Segmented train set
Chinese —- —- 62 8.2
English

22,205
—- —- 58 8.5

Development set
Chinese 506 3,515 870 24 6.9
Test set
Chinese 500 3,794 893 62 7.5

Table 1: Chi-Eng supplied corpus statistics

’Flawless English’ (5), adequacy judges how much of the
information is carried by the translation, from ’None of
it’ (1) to ’All of the information’ (5).

4.3. Development work

Several different configurations were tested for the devel-
opment set. Their results are shown in Table 2, where
’aU’ and ’a2’ refer to using the union and the s2t align-
ment, respectively. The term ’seg’ refers to training with
the segmented version of the corpus, whereas ’f’ refers
setting the pruning parameter to 0.2, instead of leaving it
to 0 (see section 3.4). As about the effect of using a dic-
tionary of embedded words (see section 3.3), an evalua-
tion without it has been performed, leading to the results
shown with term ’-D’. In general, these results show a
slight variation in performance for both alignments, but
with a remarkable descent in terms of NIST score.

runs BLEU NIST WER PER GTM

aU 0.244 5.169 0.615 0.529 0.591
aU,seg 0.251 5.187 0.607 0.521 0.595

aU,seg,f 0.255 5.210 0.603 0.518 0.594
aU,seg,-D 0.264 4.741 0.606 0.524 0.592

a2 0.319 3.789 0.614 0.552 0.573
a2,seg 0.318 3.871 0.606 0.546 0.573

a2,seg,f 0.314 3.678 0.607 0.548 0.570
a2,seg,-D 0.315 3.706 0.607 0.547 0.571

Table 2: Automatic evaluation results (development set)

All runs using the union alignment leave 7 sentences
untranslated (empty), whereas runs using the s2t align-
ment leave 16, 18, 19 and 19 sentences each. As we can
see, the greatest difference between all the results lies in
the original word alignment used to extract the bilingual
tuples. The segmented version of the corpus provides a
slight but consistent improvement, helping the training to
produce more accurate alignments and shorter tuples. As
about pruning, it seems that this technique does not make



much of a change, but it turns the algorithm a bit more
efficient.

4.4. Test set results

For the reasons presented above, we have selected con-
figurations ’aU,seg,f’ (run A) and ’a2,seg,f’ (run B) as
first-best and second-best for the test set. The difference
in their original alignment makes a big difference in the
final translation transducer, as we can see in the statistics
shown in Table 3, where the total number of tuples, tuples
vocabulary size, average tuples length (adding source and
target words) and number of embedded words are shown.

runs tuples vcb length embed

A 97,338 27,039 3.9 4741
B 140,896 29,344 2.9 1545

Table 3: Statistics of two different runs

Usually, the union alignment leads to much longer
tuples, which in turn increases the number of embed-
ded words, whose translation is ’solved’ by the dictionary
built up with the intersection. On the contrary, using the
s2t alignment we increase the number of total tuples (by
decreasing their length), reducing at the same time the
number of embedded words. However, we appreciate an
important increase in the percentage of tuples translating
to NULL (up to 28%, in contrast to 7.5% for the union),
an undesirable consequence of following the asymmetric
alignment. This could be avoided by taking a hard de-
cision as to where to align these tuples (whether to the
previous or the next tuple), but we do not believe this
to be of much gain compared to using the union align-
ment. Finally, many of the new unigrams that are created
through the dictionary when using the union alignment,
already exist in the FST using the s2t alignment, but they
are linked to NULL, which is inappropriate when no his-
tory can help in decoding. Table 4 presents the results
obtained by these two runs evaluating against automatic
measures.

runs BLEU NIST WER PER GTM

A 0.279 6.778 0.556 0.465 0.647
B 0.331 5.391 0.550 0.490 0.620

Table 4: Automatic evaluation results for two runs

Run A has produced no output in 5/500 sentences.
Run B has produced no output in 11/500 sentences. Re-
sults show a surprising behaviour: while NIST score,
PER and GTM clearly prefer run A, the BLEU metric
gives a much better score to run B, being the WER prac-
tically identical in both cases. All in all, we believe run
A to be slightly better and more consistent with human

translation, being more based on a phrase translation ap-
proach. It seems that BLEU does not seem to penalise the
’shortening’ effect of run B output. In fact, the average
output sentence length for run A is 6.01 words, whereas
for run B is only 5.18, a clear consequence of the high
percentage of tuples translating to NULL.

Table 5 presents the TALP results of the manual eval-
uation for run A. As expected given the lack of a reorder-
ing scheme in the statistical machine translator proposed,
the fluency score does not even achieve a ’3’, meaning
’Non-native English’. However, the adequacy score is
quite good as it means the ’Much of the information’ is
being translated in the output.

run fluency adequacy

A 2.792 3.022

Table 5: Manual evaluation results for run A

5. Analysis and discussion

Among the various configurations tested, the biggest dif-
ference lies in the word alignment used to extract tuples.
However, all of them share a very important limitation of
the current architecture. This refers to word reordering,
which is strictly limited to the local reordering inside a
tuple, making the approach inappropriate for pairs of lan-
guages with a very different word order. In the Chinese-
English case, the system is unable to perform long re-
orderings, which leads to an important loss in the fluency
of the output translation.

On the other hand, the addition of a dictionary when
using the union alignment ensures that most of content
words are translated, assuring that ’most of the informa-
tion’ is included. This is a typical problem of statistical
machine translation systems, which tend to make stupid
syntactic or morphological mistakes while still providing
a ’fair’ message translation. Some examples of transla-
tion and one reference for the development set are shown
in Table 6.

Translation: that what time start ?
Reference: what time does it start ?

Translation: stomach very hurts .
Reference: i have a severe pain in my stomach .

Table 6: Samples of translations and reference (dev set)

Finally, we would like to point out the seemingly
inconsistent results of automatic evaluation measures,
which demand further research towards finding more ro-
bust ways to measure translation performance.



6. Conclusion and further work

The statistical machine translation TALP system has been
presented in detail. Description and training details from
a parallel corpus have been shown. An evaluation in
the framework of Chinese-English supplied task of the
IWSLT’04 workshop has been performed. Results have
been discussed, addressing the limitations of the system
that are highlighted by this challenging translation task.

Future work to improve the system should necessarily
tackle the problem of embedded N-grams. One way of
treating them would be to extract their translation in a
dictionary as it is currently done with embedded words.
This would lead to a phrase-based-like approach, but with
a reduced set of phrases compared to current approaches.

Moreover, a generalization of the extracted tuples is
necessary, for example using classification algorithms or
clustering. This could give the system the power of trans-
lation unseen tuples adequately, by using the context of
’similar’ seen tuples.

And last but not least, techniques to overcome the re-
ordering limitation must be researched, even if that means
some big structural change in the translation model based
on FST, which proves currently inadequate for pairs of
language with different word ordering.
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