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Abstract
We present here our work in automatic parameterization of nat-
ural speech by means of a pitch synchronous source-filter de-
composition algorithm. The derivative glottal source is mod-
elled using the Liljencrants-Fant (LF) model. The model pa-
rameters are obtained simultaneously with the coefficients of an
all-pole filter representing the vocal tract response by means of
a quadratic programming algorithm. Synthetic data has been
created and analyzed in order to show the appropriate function
of the estimation method. The parameterization results in high
quality synthesized speech for voiced frames. Voice quality ex-
traction is performed on basis to the LF source representation.
The inherent modelling of the voice source makes it suitable for
voice modification tasks. Work is in progress to add this speech
representation to emotional speech synthesis and voice conver-
sion algorithms.

1. Introduction
Estimation of voice source parameters is an important part of
many applications that would benefit of a correct source param-
eterization, speech synthesis being the most obvious. Speech
analysis, voice conversion or emotional synthesis, are other ap-
plications requiring accurate knowledge about the voice source.
One method to obtain this representation is to use inverse filter-
ing techniques together with a parameterization of the estimated
glottal source. This is a complex problem that has been studied
for years with the goal of developing an automatic method of
parameterization ([1], [2] or [3] among others).

We are developing an analysis tool that would allow us to
obtain a physically relevant representation of the speech sig-
nal. Our goal is to be able to add voice quality to the speech
generation system, since it is a profitable knowledge for appli-
cations requiring large voice modifications (synthesis of emo-
tional speech of voice conversion among others).

In this article we report the current work performed in this
direction. The parameterization algorithm is presented in the
next section, together with some specific parts dealing with the
glottal epochs detection (sec. 2.1), initial source modelling and
the optimization algorithm (sec. 2.2). A description of the LF
derivative glottal source is then presented in sec. 2.3. The results
of the experiments carried out during this work are reported in
sec. 3. We end the report by explaining future directions for the
research and some improvements to the current version of the
algorithm (sec. 4).

2. Voice-source parameterization algorithm
The estimation algorithm requires pitch-synchronization, since
the parametric model for a glottal period needs be matched ex-

actly. Both the instants of opening and closing of the glottis
are needed, and to obtain that we will use the simultaneously
recorded signal from the laryngograph (EGG signal). The joint
estimation of the voice source and the vocal tract is performed
using a simpler model for the source (KLGLOTT88) proposed
by Klatt [4], followed by a parameterization using the final LF
model.

We start with a description of the algorithm used for the
glottal epoch detection (both opening and closure instants) in
sec. 2.1 and continue by giving the details of the KLGLOTT88
representation and optimization algorithm in 2.2.

2.1. EGG based glottal closure/opening instant detection

Electroglottography is a technique used to obtain an indirect
knowledge of the laryngeal behavior during speaking by mea-
suring the variation in electrical impedance across the throat.
The EGG waveform and its relation to the events occurring at
the glottis is well-known and has been reported extensively.

We will obtain the glottal closure instants (gcis) as the in-
stants of occurrence of the minimum of derivative. As can be
seen in figure 1, closure points are easily identifiable, since clo-
sure of the glottis is often abrupt. However, the opening of the
glottis is not so easily obtained from the derivative of the EGG
(as seen in the first pulses, trying to use the maximum of the
derivative between to closure points is rather difficult). Instead,
we will use a thresholding method that has proved successful
(e.g. [1]). The glottal opening instant is defined as the instant
where the EGG waveform reaches a threshold of35% of the
difference between the maximum and the minimum of the EGG
in that period.
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Figure 1: Several pitch periods of EGG and differential EGG
waveforms, showing the glottal closure instants occurring at
the minimum of the derivative. The glottal opening instants, ob-
tained by searching for the differential EGG maxima, are some-
times ill-defined, as marked by the two arrows in the left.



2.2. Convex optimization

In order to obtain the different parameters of the system, we
will formulate the problem in terms of the glottal wave. We
will minimize the error between the glottal wave as modelled
by the KLGLOTT88 model, and the estimated glottal wave,
that would be obtained by inverse-filtering the speech waveform
with the filter parameters to be estimated simultaneously. The
KLGLOTT88 model [4] can be parameterized with a second
order polynomial:

gKL(t) =



b · t · (2 tgci − 3 t) , 0 ≤ t < tgci,
0 , tgci ≤ t < T0,

(1)

whereFs is the sampling frequency,T0 the pitch period of the
voice, tgci is the glottal closure instant andb is a parameter
controlling the amplitude of the waveform. We have slightly
modified the original notation to remark the fact that only one
independent parameter controls the amplitude.

In order to minimize the error between the estimated and
parameterized glottal waveforms, we need to choose which er-
ror norm we will use. If we chooseL1 or Linf the problem can
be solved using linear programming techniques [5]. However,
we will use theL2 norm, so the error minimization is trans-
formed into a quadratic programming (QP) problem. There are
several ways to solve a QP problem (a large collection of avail-
able software packages can be found in [6]); we will use the Se-
quential Unconstrained Minimization Method (SUMT) (see [7]
for a mathematical description).

Let the filter coefficients be denoted as[â1 · · · âN+1],
the estimated derivative glottal waveform asgif (n) and the
(known) speech signal ass(n):

gif (n) = s(n) −

N+1
X

k=1

âks(n − k). (2)

The error between the parametric glottal wave (that we assume
to be a KLGLOTT88 waveform) and the estimated glottal wave
can then be formulated as:

gKL(n)−gif (n) = b·n·(2 ngci−3 n)+

N+1
X

k=1

âks(n−k)−s(n),

(3)
in the open phase, and as:

gKL(n) − gif (n) = 0 +

N+1
X

k=1

âks(n − k) − s(n), (4)

when the glottis is closed. If we write down the error for the
whole cycle length, we have (in matrix notation):
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= Fx − y, (5)

wherex = [b â1 · · · âN+1] is a vector containing the parame-
ters to be estimated. The equation error to minimize is then, in
matrix notation:

min
x

||e||2 = min
x

||Fx − y||2 = min
x

x
T
F

T
Fx − 2yT

Fx.

This minimization is a convex optimization problem [7],
thus guaranteed to have only one (local) minimum (i.e. the
optimal solution). We want to impose a low-pas characteris-
tic for the final pole, since it is the spectral tilt characteristic of
the KLGLOTT88 model. This means that the pole itself must
be positive. Since it is the product of all the other poles, oc-
curring in complex conjugate pairs due to the resonator char-
acteristic of the filter, constraining the coefficientaN+1 to be
positive guarantees the low-pass characteristic. Furthermore,
since this last coefficient is the product of all the pole magni-
tudes, we place an upper bound on it in order to obtain stable
filters. The two additional constraints of the problem are then
0 < aN+1 ≤ 0.9 · 0.985N and b > 0. The values0.9 for
the glottal spectral tilt and0.985 for the N vocal tract poles
were suggested by Lu [5] and successfully used in other re-
search projects (e.g. [8]). As a result of this optimization stage,
we obtain the estimated coefficients of the vocal tract filter, and
an initial estimation of the glottal excitation, modelled as a KL-
GLOTT88 waveform.

As stated before, this simpler model is useful for the math-
ematical formulation of the problem, but there are other models
performing better for a wider range of voice types. The next step
is then to reparameterize the derivated glottal inverse waveform
with the LF model, extensively reported and studied for several
phonations.

2.3. LF model

The LF model has been widely used and is by now well estab-
lished. Its parameters have been correlated to physiological and
acoustic parameters. We are first presenting the model, and then
explaining how it is incorporated into our system and how can
we extract common measures to characterize difference voice
qualities.

The model is capable of characterize the shape of the
derivative glottal wave for a wide range of voices, both in the
open and closed phases. In figure 2 a glottal LF cycle is pre-
sented, ranging from0 to the fundamental periodto. The other
time marks are:tp, representing the maximum of the glottal
flow (and thus a value of0 for the derivative);te, the time in-
stant of the minimum in the derivative;ta, defined as the point
where the tangent to the exponential return phase crosses0; tc

the moment when the return phase reaches0; andEe as the
absolute value of the minimum of the derivative. The mathe-
matical description of the LF model is:

gLF (t) =

8

<

:

E0e
αt sin(wgt) , 0 ≤ t ≤ te,

− Ee

εta
[e−ε(t−te) − e−ε(tc−te) , te < t ≤ tc,

0 , tc < t ≤ t0,
(6)

The rest of the parameters (α, wg, E0 andε) are computed
from the temporal ones by fulfilling some requirements of area
balance and continuity (for details refer to [9], [10] or [3]):

Z to

0

gLF (t) = 0 (7)

wg =
π

tp

(8)

εta = 1 − e−ε(tc−te) (9)

E0 = −
Ee

eαte sin wgte

. (10)

One of the main differences with respect to the KL-
GLOTT88 model seen in section 2.2 is the non-abrupt return
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Figure 2:The LF model. The figure shows a glottal period (from
0 until the period lengthto, and the parameterstp, te, tc, ta and
Ee.

phase. This is a more realistic modelling, since the glottis clo-
sure does not occur instantaneously. Thus, the LF model can
result in a better approximation of the (derivative) glottal wave-
form and in an improved synthesis quality for several voice
types.

2.3.1. LF model fitting

The fitting of an LF model to the inverse filtered speech signal
is performed by means of non-linear optimization algorithms.
Thus, a robust initial estimate needs to be computed in order to
minimize the probability of ending with a local (non-optimal)
minimum.

There are several methods to obtain the initial estimation.
They can be extracted from the estimated glottal waveform ob-
tained with the inverse filtering. In this case, it needs to be low-
pass filtered prior to any computation since it normally contains
aspiration noise. The time markerstp, te, tc, ta and the value
of Ee can then be obtained by identifying the minimum value
of the signal and the zero-crossings (for details see [11]).

In our work, we have decided to take advantage of the sim-
ilarities between the parametric KLGLOTT88 model obtained
in the optimization step and the final LF model.Ee is set to
the minimum value ofgKL, te to the time position of this min-
imum, andtp as the zero-crossing to the left ofte. Since the
glottal cycles are already available (as explained in 2.1),tc and
to are set to the end of the glottal cycle. Note that we are using
here the common approach of not using a different value fortc.

With this initial estimate, the parameters are further re-
fined via constrained non-linear optimization methods (see [11]
or [5]).

2.3.2. Glottal flow measurements

Several measures can be extracted from the glottal flow wave-
form in order to characterize in a numerical (an thus compara-
ble) form the voice. A part from the directly available LF set
of parameters, the speed quotient and the open quotient, two of
the most extensively used characteristics in the literature, can
be extracted.

The open quotient measure defines the duration of the open
phase in relation to total cycle length and is computed as:
OQ = te/T0, whereT0 is the total cycle length. A small mod-
ification can be added to penalize the very small glottal flow
values occurring when the termte in eq. 6 is large (the glottis
is not considered open until the flow surpasses a experimentally
set threshold [2]). The relative duration of the closing phase,

as a percentage of the cycle length, is defined by the closing
quotient:CQ = (te − tp)/T0. A last measure describing the
temporal skewing between the closing and opening phase is the
speed quotient:SQ = OQ−CQ

CQ
. Depending on the point of

view, the returning phaseta can or cannot be considered part of
the preceding measures.

3. Results
In this section we present some of the results obtained in this
work. We have experimented with analysis/synthesis of natural
speech using simultaneously recorded laryngograph data, ob-
taining promising results in the terms of synthetic speech qual-
ity. The method is robust and has been used to analyze several
utterances from different databases. We will start by presenting
some results obtained used artificially created data, in order to
validate the method. Then, the results of the analysis of real
data are explained in sec.3.2.

3.1. Synthetic data validation

We have performed an initial evaluation with synthetic data in
order to validate the algorithm. Following the work by Striket
al. [11], we performed the estimations on a series of LF pulses
created with the parameters proposed there (all the units are mil-
liseconds):

1 2 3 4 5 6 7 8 9 10 11
tp 4 4 6 6 6 6 4 4 5.2 5.2 5.2
te 5.2 5.2 7.2 7.2 8.8 8.8 6 6 7.2 7.2 7.2
ta 0.4 1.6 0.4 1.6 0.4 0.8 0.4 1.6 0.4 1 1.6

The other parameters of the LF model were kept constant
(to = 0, tc = 10, Ee = 1024) since their influence on the
estimation error is small. This pulses have been filtered with a
LPC derived filter computed for a vowela.

The error measure we will use is the Averaged Perceptual
Error (APE) [11], computed by averaging the percentual error
of the input and estimated parameters according toPE = |P̂ −

P |/P , whereP̂ is the estimated value andP is the original
parameter used in synthesis.

The resulting APEs are smaller in comparison with the re-
sults reported before:APEte = 0.0186, APEta = 1.1402
andAPEtp = 0.2380. This is due to the fact that in our case,
thete parameter is actually an input to the system, since it cor-
responds to the glottal closure instant and we are assuming it
known. The algorithm actually performs a reestimation around
this original value to account for small errors in the GCI detec-
tion from the EGG signal, that explains the APE forte not being
zero. Nevertheless, the results show that the method is perform-
ing as expected for synthetic data. The next section presents
some experiments performed using natural speech.

3.2. Natural speech analysis

Figure 3 shows a sample of the fitting process for both mod-
els (KLGLOTT88 and LF). As it can be seen, the LF model
achieves a better shape modelling than the KLGLOTT88 (the
objective quality of the fitting in terms of segmental SNR also
improves).

We did some experiments incorporating a weighting filter-
ing to the LF model fitting, although no significant improve-
ment improvement (in terms of synthetic speech quality) was
observed (in some cases it slightly decreased). In this config-
uration, the error of the LF fitting procedure is computed in
the speech domain. Prior to compute theL2 norm, the error
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Figure 3:Several glottal cycles obtained by inverse filtering the
speech signal and the corresponding fitted KLGLOTT88 and LF
models. The higher flexibility of the LF model results in a better
shaping in terms of root mean square error.

is passed though a perceptual weighting filter used to concen-
trate the error in the less noticeable parts of the spectrum. The
weighting filter coefficientsbk in eq. 11 are derived performing
a LPC analysis using a window of25 milliseconds centered on
the pitch period. The weighting filter is then constructed as:

W (z) =
1 −

PK

k=1 bkγk
1 z−k

1 −
PK

k=1 bkγk
2 z−k

, (11)

whereγ1 > γ2 are used to control the sharpness of the ampli-
tude response ofW (z). This is currently used in speech cod-
ing schemes based on linear predictive analysis-by-synthesis
(e.g. [12]).

In principle, it would be interesting to use the perceptual
weighting filter in the joint (KLGLOTT88 source and all-pole
filter) analysis. Unfortunately, the IIR characteristic of this fil-
ter would break the convex formulation of the problem, thus
invalidating the actual algorithm used in our work. As a sub-
optimal approach, we develop the first joint estimation as be-
fore, and include the perceptual measure in the adjustment of
the LF parameters. Further work is required to study the effect
of incorporating perceptual weighting measures when comput-
ing the vocal tract estimation.

4. Conclusions
We have presented here a robust joint source-filter decompo-
sition algorithm. It has been successfully used to analyze and
re-synthesize whole utterances from our databases. The method
presented here works reasonably well for voiced speech, but it
needs to be extended to the unvoiced parts. In order to do this,
the aspiration noise of the adopted human production system
needs to be estimated together with the glottal excitation.

Several ways to obtain the noise estimations have been pro-
posed. One possibility is to assume a noise residual model, and
estimate the parameters using the glottal residual waveform.
Lu [5] proposed a statistical method using wavelet denoising,
to estimate a noise residual model with two components, one
is an amplitude modulated pitch-synchronous Gaussian noise,
and the other a zero mean, unit variance, white Gaussian noise.
On the other hand, it is also possible to adopt a stochastic ap-
proach and train a codebook with the glottal derivative residuals
(e.g. [8]).

From our point of view the first approach is more interesting
since we want to obtain a production model related to the hu-
man production system. However, unless a good noise model
is adopted, the second approach will probably result in better
quality.
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