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Abstract
This paper describes our ongoing work in open domain speech translation. We describe how we developed a lecture translation system by
moving from speech translation of European Parliament Plenary Sessions and seminar talks to the open domain of lectures. We started
with our speech recognition and statistical machine translation 2006 evaluation systems developed within the framework of TC-Star
(Technology and Corpora for Speech to Speech Translation) and CHIL (Computers in the Human Interaction Loop). The paper presents
the speech translation performance of these systems on lectures and gives an overview of our final real-time lecture translation system.

1. Introduction
Growing international information structures and decreas-
ing travel costs could make the dissemination of knowledge
in this globalized world very easy – if only the language
barrier could be overcome. Lectures are a very effective
method of knowledge dissemination. Such personalized
talks are the preferred method since they allow the speakers
to tailor their presentation toward a specific audience, and
in return allow the listeners to get the most relevant infor-
mation through interaction with the speaker. In addition,
personal communication fosters the exchange of ideas, al-
lows for collaboration, and forms ties between distant units,
e.g. scientific laboratories or companies. At the same time
it is desirable to allow the presenters of talks and lectures to
speak in their native language, since, no matter how profi-
cient in a foreign language, one will always feel more confi-
dent in the native tongue. To overcome this obstacle human
translators are currently the only solution. Unfortunately,
translation services are often prohibitively expensive such
that many lectures are not given at all as a result of the lan-
guage barrier. The use of modern machine translation tech-
niques have the potential to provide translation services at
no costs to a wide audience, making it possible to overcome
the language barrier and bring the people closer together.
This paper describes our ongoing work in unlimited domain
speech translation of lectures starting from systems built
within the framework of CHIL and TC-STAR.
CHIL (Waibel et al., 2004),Computers in the Human In-
teraction Loop, aims at making significant advances in the
fields of speaker localization and tracking, speech activity
detection and distant-talking automatic speech recognition.
The long-term goal is the ability to recognize speech in a
real reverberant environment, without any constraint on the
number or distribution of microphones in the room nor on
the number of sound sources active at the same time.
TC-STAR (TC-Star, 2004),Technologies and Corpora for
Speech-to-Speech-Translation, is envisaged as a long-term
effort to advance research in all core technologies for
Speech-to-Speech Translation (SST) which is a combina-
tion of Automatic Speech Recognition (ASR), Spoken Lan-
guage Translation (SLT) and Text to Speech (TTS). The ob-
jective of the project is to make a breakthrough in SST that

significantly reduces the gap between human and machine
translation performance. The focus hereby is on the devel-
opment of new algorithms and methods. So far the project
targets a selection of unconstrained conversational speech
domains – speeches and broadcast news – and three lan-
guages: European English, European Spanish, and Man-
darin Chinese.
The paper is organized as follows: The developmental
work started from our 2006 ASR and SMT evaluation sys-
tems for European Parliament Plenary Session (EPPS, TC-
STAR) (Sẗuker et al., 2006) and the NIST Rich Transcrip-
tion evaluation RT-06S on seminars (CHIL) (Fügen et al.,
2006b). In Section 3., we first compare the different ASR
systems of both domains and show how we merged these
systems for lecture recognition. Furthermore, we present
first results of acoustic and language model adaptation on
the lecture domain. In Section 4., we give statistical ma-
chine translation results on text and ASR input for lectures
of our 2006 SMT evaluation system for EPPS. In addition,
we explain in detail how we adapted our EPPS SMT sys-
tem towards the more conversational style of lectures and
present the corresponding machine translation results. Sec-
tion 5. provides an overview of our real-time lecture trans-
lation system, Section 6. concludes this paper.

2. Development and Evaluation Data
For the automatic speech recognition (ASR) and statisti-
cal machine translation (SMT) experiments on lectures, we
selected three different lectures as development and evalu-
ation data. These lectures were held in non-native English
by the same speaker on different topics and were recorded
with close talking microphones (Fügen et al., 2006a).

Dev: This 24min talk was held to give a broad overview of
current research projects in our lab.

t035: A 35min talk held as a conference key-note, which
is only partly covered by the Dev talk.

t036+: A 31min talk on the same topic as t035, but held in
a different environment and situation.

For the ASR experiments we used the seminar part of the
NIST RT-06S development data and the 2006 EPPS devel-
opment data as additional data sources.



3. Speech Recognition
In this section we first compare the 2006 evaluation sys-
tems for European Parliament Plenary Sessions (Stüker et
al., 2006) and CHIL seminars (Fügen et al., 2006b) and
show how we developed a single system, which performs
almost as good as the evaluation systems on both domains.
This is followed by the presentation of the system’s perfor-
mance on the lecture domain.
All speech recognition experiments were done using the
Janus Recognition Toolkit (JRTk) featuring the Ibis de-
coder (Soltau et al., 2001). For language modeling, we
used the SRI Language Modeling Toolkit (SRILM) (Stol-
cke, 2002).

3.1. Data
For acoustic model training, we selected the following cor-
pora: ICSI and NIST meeting recordings (Janin et al., 2004;
(LDC), 2004), TED lectures (Lamel et al., 1994), CHIL
seminars (Waibel et al., 2004), and European Parliament
Plenary Sessions (EPPS) (Gollan et al., 2005). Given the
results in (F̈ugen et al., 2006b) we have not used the ISL
meeting corpus as well as the Hub4 Broadcast News corpus
due to their channel mismatch: both corpora were recorded
with lapel microphones. Table 1 gives an overview of the
total amount of speech in the different corpora.

ICSI NIST TED CHIL EPPS
speakers 463 77 52 67 1894
duration 72h 13h 13h 10h 80h

Table 1: Number of speakers and total amount of speech
for the acoustic model training data.

For language model training, some additional text data
was used on top of the 2006 evaluation systems’ (Fügen
et al., 2006b; Sẗuker et al., 2006) language model train-
ing data. Altogether, the following corpora were available:
Talks, text documents from TC-STAR and CHIL, EPPS
transcripts, EPPS final text editions, non AMI meeting data
(ISL, ICSI, NIST), AMI meeting data, TED lectures, CHIL
seminars, broadcast news data, UN (United Nations) text
data released by ELDA, recent proceedings data (2002 -
2005), web data from UWash (related to ISL, ICSI, and
NIST meetings) and web data collected for RT-06S (related
to CHIL seminars). Table 2 shows the amount of words
available for each corpus.

3.2. System Description
The acoustic models used in the experiments below were
all trained in the same way, resulting in a size of 16,000
distributions over 4,000 models, with a maximum of 64
Gaussians per model. These models were all based on the
same quint-phone context decision tree and phoneme set
that was used for the RT-06S evaluation system. Further-
more, also the acoustic model training setup was taken from
the RT-06S system: (1) a first incremental growing of Gaus-
sians, (2) estimation of the global STC transform (Gales,
1998), (3) a second incremental growing of Gaussians.
To train the distributions for the semi-continuous system
and to compensate for the occasionally worse fixed-state
alignments, 2 iterations of Viterbi training were performed
(4). For the SAT models, 4 additional iterations of SAT

Viterbi training by using constrained MLLR in the feature
space (FSA) (Gales, 1997) were applied (5). We use an
MFCC FFT front-end with a 42-dimensional feature space
after linear discriminant analysis (LDA) and a global STC
transform with utterance-based cepstral mean subtraction
(CMS). More details can be found in (Fügen et al., 2006b).

3.3. Baseline Experiments and Comparisons

The goal was to build a single acoustic model for both do-
mains, EPPS and CHIL seminars and to finally use this
acoustic model on the lecture data. For this, we compared
different acoustic models trained on different subsets of the
acoustic training material described in Section 3.1.. All
subsets contain the CHIL corpus, which is therefore not ex-
plicitly mentioned in the table rows below.
We used a three pass decoding setup to be comparable with
other evaluation systems. The first pass uses incremental
speaker based vocal tract length normalization (VTLN) and
constrained MLLR estimation and is decoded with the semi
continuous models (4) using tight search beams. The sec-
ond pass uses the same semi continuous acoustic models
as pass one, but before decoding, MLLR (Leggetter and
Woodland, 1995) adaptation together with an estimation
of fixed VTLN and constrained MLLR parameters is per-
formed. For this, the confidence weighted hypotheses of the
previous pass are being used. For the third pass, the FSA-
SAT acoustic models (5) are used together with the same
adaptation scheme applied in pass two. After that, confu-
sion network combination (CNC) (Mangu et al., 1999) is
being performed, using the lattices of the third pass only.
We used exactly the same decoding dictionaries and lan-
guage models as for the EPPS and RT-06S evaluation sys-
tems.

3.3.1. CHIL Seminars
For the CHIL seminars we used the same language models
and dictionaries as described in (Fügen et al., 2006b). The
4-gram language model was trained on AMI and non-AMI
meetings, TED, some CHIL data, BN, proceedings and web
data related to meetings and CHIL lectures. The interpola-
tion weights, which were tuned on held-out CHIL data are
shown in Table 2. The language model has a perplexity of
130 on the RT-06S development data, while 16% 4-grams,
41% 3-grams, 39% 2-grams, and 4% 1-grams were used.
The dictionary consists of around 59k pronunciation vari-
ants over a vocabulary of 52k. It has an OOV-Rate of 0.65
on the RT-06S development data.
As can be seen in Table 3, acoustic models trained on EPPS
alone or additionally including TED are significant worse
than the other two systems. The performance of the two
other systems is nearly identical, which means that adding
the EPPS data to the acoustic model training data used in
RT-06 (ICSI+NIST+TED) does not hurt (but also does not
improve the overall results).

3.3.2. European Parliament Plenary Sessions
For the European Parliament Plenary Sessions we used the
language models and dictionaries as described in (Stüker
et al., 2006). The 4-gram language model was trained on
EPPS transcriptions and final text editions, BN, and UN and
reached a perplexity of 93 on the 2006 EPPS development
data, whereas 29% 4-grams, 36% 3-grams, 32% 2-grams,



talks docs eppsS eppsT nAMI AMI TED CHIL BN UN proc UWash wCHIL
words 93k 192k 750k 33M 1.1M 200k 98k 45k 131M 42M 23M 147M 146M
EPPS 35% 54% 9% 2%
CHIL 15% 8% 0.6% 25% 0.8% 24% 12% 15%
Dev 36% 1% 12% 3% 8% 9% 11% 19%

Table 2: Language model training data in words together with their interpolation weights for the different domains. ’Dev’
is the lecture development set as described in Section 2.. Empty cells indicate that the data was not useful for that domain.

CHIL 1st 2nd 3rd cnc
EPPS 40.3 –.- –.- –.-

TED+EPPS 38.7 –.- –.- –.-
ICSI+NIST+TED+EPPS 34.1 27.5 26.2 25.5

ICSI+NIST+TED 34.0 27.1 26.0 25.5

Table 3: Results on the RT06 development data. The CHIL
data was used in all systems for AM training.

and 4% 1-grams were used. The interpolation weights were
tuned on the 2005 EPPS development data and are shown
in Table 2. The dictionary for EPPS consists of 45k pro-
nunciations over a vocabulary of 40k and has an OOV-Rate
of 0.43 on the 2006 EPPS development data.
As can be seen in Table 4 the last system trained with-
out EPPS performs worst. Furthermore, compared to the
acoustic model used for the 2006 EPPS evaluation (MS23,
(Stüker et al., 2006)), the acoustic model training setup de-
veloped for RT-06S is significantly better (MS23 vs. EPPS
rows). An additional gain can be seen by adding TED,
which is also a corpus containing European English. By
adding the meeting data, the system improves not further,
instead it is in between the EPPS and TED+EPPS systems.
Nevertheless, after doing confusion network combination,
it performs identical to the TED+EPPS system.

1st 2nd 3rd cnc
MS23 22.6 –.- –.- –.-
EPPS 20.8 15.4 14.7 14.5

TED+EPPS 20.1 14.8 14.3 14.1
ICSI+NIST+TED+EPPS 20.6 15.1 14.6 14.1

ICSI+NIST+TED 29.1 –.- –.- –.-

Table 4: Results on the 2006 EPPS development data. The
CHIL data was used in all systems for AM training, besides
MS23. MS23 specifies the 2006 EPPS evaluation setup.

Compared to the CHIL seminars, the EPPS results are
much better. The reason for that lies in the huge available
amount of acoustic and language model in-domain training
data for EPPS compared to CHIL, where only a very small
amount of in-domain data is available. Furthermore, the
language used in the European Parliament is more formal
and therefore less spontaneous. This leads also to a bet-
ter OOV-rate and language model perplexity with a higher
n-gram coverage for larger n-grams.

3.4. Lecture Domain

Based on the perplexities and OOV-Rates on Dev shown
in Table 5 we selected the language model and dictionary
built for the CHIL seminars for our baseline experiments.
Not surprisingly, this selection holds also for the evaluation

talks. The EPPS language model and vocabulary is, due
to the large amount of in-domain data, too specific. The
OOV-rates of the RT-06S (CHIL) vocabulary and for t036+
are surprisingly low – the only explanation for that is, that
this talk is not very specific.

Dev t035 t036+
PPL OOV PPL OOV PPL OOV

CHIL 173 0.22 117 0.27 186 0.09
EPPS 205 1.29 230 1.83 229 1.72

Table 5: Perplexities (PPL) and OOV-Rates of the CHIL
and EPPS language models and vocabularies.

As can be seen in Table 6, the acoustic model trained on
all data performs significantly better than the other models.
For this reason we selected this model for our further exper-
iments. The baseline results on the lecture evaluation talks
are shown in Table 7. With the training setup developed
for RT-06S we significantly improved our results compared
to the acoustic models developed in (Fügen et al., 2006a)
(MS11 column in Table 7). Furthermore, it can be seen that
the system performs quite well on unseen domains (t035)
and different environments (t036+).

3.4.1. Model Adaptation Experiments
Lectures are an ideal domain for doing adaptation, be-
cause the lecturer and also the topic might be known in ad-
vance (Cettolo et al., 2004). Therefore, we give first acous-
tic and language model adaptation results. As can be seen,
this allows us to reduce the decoding setup from three to
only a single decoding pass without any loss in WER and
is the first step towards a real-time lecture recognition and
translation system.
For acoustic model adaptation an additional amount of
around 7 hours of speech for the same speaker was avail-
able. For the adaptation experiments subsets of this data
with different durations were used to compute VTLN and
constrained MLLR (FSA) parameters and to perform model
based MLLR adaptation. The results can be seen in Table
8. While the adaptation works quite well on the evaluation
talks – the 7hrs results are similar to those achieved after

1st 2nd 3rd cnc
EPPS 23.9 –.- –.- –.-

TED+EPPS 23.4 –.- –.- –.-
ICSI+NIST+TED+EPPS 21.4 16.2 15.0 15.5

ICSI+NIST+TED 24.3 –.- –.- –.-

Table 6: Baseline results on Dev with the CHIL dictionary
and language model. The CHIL data was used in all sys-
tems for acoustic model training.



1st 2nd 3rd cnc MS11
t035 17.3 12.6 12.1 12.2 12.7

t036+ 16.7 12.0 11.6 11.5 12.4

Table 7: Baseline results on the evaluation talks t035 and
t036+. The MS11 column contains the final (CNC) results
with the acoustic model trained in (Fügen et al., 2006a).

0.5hrs 1.5hrs 3.5hrs 7hrs sup
Dev 20.9 20.0 19.5 18.9 12.0
t035 14.2 13.1 12.6 12.1 10.1

t036+ 13.3 12.3 11.5 10.7 9.3

Table 8: Acoustic model adaptation results with different
amounts of adaptation data. In the column ’sup’, supervised
adaptation was performed on the particular talk itself.

CNC with the baseline systems – the results on the Dev
talk are significantly worse. This is due to a large channel
mismatch between the adaptation material and the Dev talk.
To confirm this, we adapted on the particular talk itself and
reached for all talks reasonable results (see column sup in
Table 8). It can also be seen, that doubling the adaptation
data results in a relative gain of around 0.5% in WER.
For language model adaptation we only did a first experi-
ment by tuning the interpolation weights and reselecting the
different corpora with respect to the lecture domain. The
interpolation weights, tuned on some held-out data and the
selected corpora can be seen in Table 2. Thereby the per-
plexity on the Dev talk could only be reduced slightly from
173 to 168. Nevertheless we saw significant gains in WER
on all lectures, which are reported in Table 9.

4. Statistical Machine Translation
In this section, we describe the statistical machine transla-
tion (SMT) component in our lecture translator that was
used to translate the lectures in Section 2. from English
to Spanish and German. The underlying phrase-based
SMT system was originally developed within TC-STAR for
translating speeches from the European Parliament Plenary
Sessions (EPPS). In these experiments, we used loose cou-
pling, passing the first-best hypothesis from the recognizer
to the translation component. Translation results are re-
ported using the well known evaluation metrics BLEU (Pa-
pineni et al., 2002) and NIST (NIST, 2004). All MT scores
were calculated using case-insensitive scoring and one ref-
erence translation per test set.

4.1. Phrase Alignment
To find a translation for a source phrasef̃ = f1...fl we re-
strict the general word alignment: Words inside the source
phrase align to words inside the target phrase, and words

unadapted adapted PPL
Dev 18.9 16.1 168
t035 12.1 10.5 165

t036+ 10.7 9.1 193

Table 9: Language model adaptation results on top of the
acoustic model adaptation on 7hrs of speech. Perplexities
should be compared with Table 5.

outside the source phrase align outside the target phrase.
This constrained alignment probability is calculated using
the well-known IBM1 word alignment model, but the sum-
mation of the target words is restricted to the appropriate
regions in the target sentence. Also, the position alignment
probabilities are adjusted accordingly (Vogel, 2005). Opti-
mization is over the target side boundariesi1 andi2.

pi1,i2(f |e) =

j1−1Y
j=1

X
i/∈(i1..i2)

1

I − k
p(fj |ei)×

j2Y
j=j1

i2X
i=i1

1

k
p(fj |ei)

×
JY

j=j2+1

X
i/∈(i1..i2)

1

I − k
p(fj |ei)

(1)
Similar to pi1,i2(f |e) we can calculatepi1,i2(e|f), now
summing over the source words and multiplying along the
target words. To find the optimal target phrase we inter-
polate the log probabilities and take the pair(i1, i2) that
gives the highest probability. The interpolation factorc can
be estimated on a development test set. The scores calcu-
lated in the phrase alignment are alignment scores for the
entire sentence. As phrase translation probabilities we use
the second term in Eqn. 1.

4.2. Decoder

The beam search decoder combines all model scores to
find the best translation. In these experiments, the differ-
ent models used were: (1) The translation model, i.e. the
word-to-word and phrase-to-phrase translations extracted
from the bilingual corpus according to the new alignment
method described in this paper. (2) A trigram language
model. The SRI language model toolkit was used to train
the models (Stolcke, 2002). (3) A word reordering model,
which assigns higher costs to longer distance reordering.
We use the jump probabilitiesp(j|j′) of the HMM word
alignment model (Vogel et al., 1996) wherej is the cur-
rent position in the source sentence andj′ is the previous
position. (4) Simple word and phrase count models. The
former is essentially used to compensate for the tendency
of the language model to prefer shorter translations, while
the latter can be used to give preference to longer phrases.
For each model a scaling factor can be used to modify the
contribution of this model to the overall score.
The decoding process is organized into two stages: First,
the word-to-word and phrase-to-phrase translations and,
if available, other specific information like named entity
translation tables are inserted into a translation lattice. In
the second step, we find the best combinations of these par-
tial translations, such that every word in the source sentence
is covered exactly once. This amounts to doing a best path
search through the translation lattice, which is extended to
allow for word reordering: Decoding proceeds essentially
along the source sentence. At each step, however, the next
word or phrase to be translated may be selected from all
words laying or phrases starting within a given look-ahead
window from the current position (Vogel, 2003).

4.3. Training Data

For training the baseline translation systems, the parallel
EPPS corpus was used. For English-Spanish, a version
was created by RWTH Aachen within TC-STAR (Gollan
et al., 2005). The English-to-German models were trained



system NIST Bleu
baseline (EPPS) 4.71 (5.61) 15.41 (20.54)
TM-adaptation 4.78 (5.67) 16.05 (21.43)
LM-adaptation 5.10 (5.99) 17.58 (22.90)
final system 5.22 (6.11) 18.57 (24.00)

Table 10: English-Spanish lecture translation system on
t036+. Results on manual transcripts are shown in brackets.

system NIST Bleu
baseline (EPPS) 4.00 (4.71) 09.32 (12.53)
TM-adaptation 4.29 (5.06) 11.01 (14.95)
LM-adaptation 4.37 (5.12) 11.67 (14.96)
final system 4.67 (5.47) 13.22 (17.25)

Table 11: English-German lecture translation system on
t036+. Results on manual transcripts are shown in brackets.

on the EPPS data as provided by Philipp Koehn (Koehn,
2003). In addition, a small number of lectures similar in
style to our development and evaluation data was collected,
transcribed, and translated into Spanish and German. Alto-
gether, parallel lecture corpora of about 12,000 words were
available in each language.

4.4. Model Adaptation

Adapting the MT component of our EPPS translation sys-
tem towards the more conversational style of lectures was
accomplished by a higher weighting of the available lec-
ture data in two different ways. First, for computing the
translation models, the small lecture corpora were multi-
plied several times and added to the original EPPS training
data. This yielded a small increase in MT scores.
Secondly, for (target) language model computation, a small
tri-gram LM was computed on t035 and then interpolated
with the original EPPS language model, whereas the inter-
polation weight was chosen in order to minimize the per-
plexity on the development set. In this manner the perplex-
ity on the Dev talk could be reduced from 645 to 394 for
German and from 543 to 403 for Spanish. To further adapt
the target language models, we collected Spanish and Ger-
man web data with the help of tools provided by the Uni-
versity of Washington (UWash, 2006). A small amount of
the used search queries were hand written, however, most
search queries were automatically created by using the most
frequent tri-grams found in the Dev talk. Approximately
1/4 of all development set tri-grams were used for this. The
German and Spanish web corpora collected in this man-
ner consisted out of 175M words and 120M words, respec-
tively. The web corpora were again added to the existing
LMs by interpolation, which yielded a perplexity of 200
for German and 134 for Spanish. The corresponding per-
plexities on the t036+ talks are 617 and 227, respectively.
The effects of translation model and language model adap-
tation, as well as the results of the final system, com-
bining both adaptation steps, are shown in Tables 10 and
11 for English-to-Spanish and English-to-German, respec-
tively. The significantly lower MT scores for the English-
to-German translation direction are mostly due to long dis-
tance dependencies and compound words which are in-
herent to the German language. In absolute terms, the

translation performance on this difficult task is still quite
poor when compared with tasks for which large amounts of
training data similar in style is available, such as the TC-
STAR EPPS task. Nevertheless, small amounts of lecture
data were sufficient to significantly improve performance,
especially when amplified by using language model adap-
tation with similar web data.

5. Real-time Lecture Translation System
For our current version of a real-time lecture translation
system, which simultaneously translates lectures given in
English into Spanish and German, we integrated the above
described speech recognition and machine translation sys-
tems together with a sentence segmentation component and
a speech synthesis into a client-server framework similar to
the one described in (Fügen et al., 2001).
To reach real-time end-to-end performance, we had to tune
the above described single pass speech recognizer to run
faster than real-time, by further restricting the beam search,
which resulted in an increase in WER to about 13% on the
evaluation talks. The other system components did not need
further tuning.
To keep the latency of the system as short as possible,
the speech recognizer already starts to decode, while the
speaker is talking and continously returns partial back
traces with first best hypotheses. Since the machine trans-
lation awaits complete sentences as input, we merged the
partial hypotheses together, and resegmented them to sen-
tence like segments. This means, that different from other
speech transcription systems no speech segmentation was
performed before processing it by the speech recognizer,
instead it was done afterwards, to have the ability to tune
the segmentation boundaries with respect to optimal ma-
chine translation performance. Currently, the segmentation
is done at silence regions only, whereby additional thresh-
olds are defined to produce segments with a length of about
five to ten words. Thereby, the latency of the system could
be limited to a maximum of about five seconds. We plan for
more sophisticated segmentation algorithms in the future.
An overview of the real-time lecture translation system is
given in Figure 1. As can be seen, the system can deliver
the output in different ways:
Subtitles: Simultaneous translations can be projected to

the wall as subtitles. This is suitable if the number
of output languages is small.

Heads-Up Display Goggles:When there is not enough
space on a wall or canvas, heads-up display goggles
can be worn to see the simultaneous translation as
subtitles. Furthermore, other participants are not dis-
turbed by the subtitles.

Targeted Audio Another solution for providing the simul-
taneous translation without disturbing others is the so-
called targeted audio device (Olszewski et al., 2006).
The targeted audio device is a beam-steered loud-
speaker, consisting of several small ultrasound loud-
speakers. It outputs audio in a beam with a width of
about 1-2 meters. People sitting within the beam are
able to hear everything, people outside the beam do
not. In future applications, several such targeted au-
dio devices could be assigned in various languages to
accommodate each participant in the lecture room.



Figure 1: The lecture transcription system.

6. Conclusion
In this paper, we presented our work in taking first steps
towards building open domain speech translation systems.
We have successfully developed an ASR system for lec-
tures by merging the evaluation systems for European Par-
liament Plenary Sessions and CHIL seminars. Furthermore,
we combined the resulting system with the translation sys-
tem used in TC-STAR to translate lectures on a new domain
from English to Spanish and German. The ASR system per-
formance exceeds our expectations, demonstrating the fea-
sibility of designing open domain recognition systems. For
translation, lectures still pose a significant challenge. Nev-
ertheless, small amounts of lecture data were sufficient to
significantly improve performance, especially when ampli-
fied by using language model adaptation with similar web
data.
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