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ABSTRACT

Several well-studied voice conversion techniques use line
spectral frequencies as features to represent the spectral en-
velopes of the processed speech frames. In order to return
to the time domain, these features are converted to linear
predictive coefficients that serve as coefficients of a filter
applied to an unknown residual signal. In this study, we
compare several residual prediction approaches that have
already been proposed in the literature dealing with voice
conversion. We also present a novel technique that outper-
forms the others in terms of voice conversion performance
and sound quality.

1. INTRODUCTION

Voice conversion is the adaptation of the characteristics of a
source speaker’s voice to those of a target speaker [1]. Over
the last few years, the interest in voice conversion has risen
significantly. This is due to its application to the individual-
ization of text-to-speech systems, whose voices, in general,
have to be created in a rather time-consuming way requiring
human assistance [2].

The most popular voice conversion technique is the ap-
plication of a linear transformation to the spectra of speech
frames [3]. The transformation parameters are estimated us-
ing a Gaussian mixture model to describe the characteristics
of the considered speech data. In doing so, we cannot use
the full spectra of the processed time frames, as their high
dimensionality leads to parameter estimation problems.
Therefore, the spectra are converted to features that are lin-
early transformed and then converted back to the frequency
domain or directly to the time domain.

After investigating several feature representations, we
were able to confirm the statement of H. Ye and S. Young [4]
that using line spectral frequencies results in much better
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sound quality than other feature types as for instance mel
frequency cepstral coefficients. However, line spectral fre-
quencies represent the spectral envelope in a rather smooth
way tracing the shape of the formants and antiformants.
Thus, spectral details that are typical for natural speech are
lost, and the result sounds rather synthetic. To overcome the
weakness of the signal representation by line spectral fre-
quencies, L. M. Arslan and D. Talkin [5] proposed to pre-
dict the target residuals that belong to the converted speech.
These residuals are then filtered based on linear predictive
coefficients that are derived from the line spectral frequen-
cies. Finally, the spectral details of the residuals result in
more natural spectra of the converted speech, a considera-
tion that led to the term high resolution voice conversion [6].

The problem now is how to predict the target residuals
of the converted speech. In the following section, we briefly
describe three solutions to that problem that have already
been proposed in the literature and, in Section 3, we derive
a new technique that is simpler and more general than the
others. Then, we examine these approaches using a Spanish
cross-gender corpus by means of listening tests in Section 4.
The results of this evaluation are discussed in Section 5.
It turns out that the novel approach outperforms the others
in terms of voice conversion performance and sound quality.

2. RESIDUAL PREDICTION: RELATED WORK

2.1. The Trivial Solution: Copying Residuals

Let us suppose that the vocal tract characteristics of a speak-
er’s speech are represented by line spectral frequencies, and
the residuals correspond to the excitation signal that hardly
contains speaker-dependent information. Then, the simplest
idea for the residual prediction is to take the residuals of the
source speech and filter them by means of the converted fea-
tures. This technique was used by A. Kain and M. W. Ma-
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con, but they stated that “merely changing the spectrum is
not sufficient for changing the speaker identity” [7]. Most
of the listeners “had the impression that a ‘third’ speaker
was created”.

Hence, it seems that the residuals contain a lot of speak-
er-dependent information so that the contribution of the
spectral transformation to the properties of the converted
signal can hardly be distinguished from that of the residual
prediction. To separate both contributions, Duxans et al. [8]
extracted the residuals from the reference (target) speech
that was aligned to the source speech and restricted their
investigations to the spectral conversion. Utilizing the ref-
erence residuals as excitation signal should result in the best
voice conversion performance in terms of sound quality and
the ability for identity conversion compared to an arbitrary
residual prediction technique. Therefore, in this paper, we
want to use this method as a standard of comparison.

2.2. Residual Codebook Method

In addition to the observation that the residual signal also
contains speaker-dependent information, it has to be men-
tioned that the line spectral frequencies which describe the
vocal tract characteristics and the corresponding residuals
are even correlated. This insight led to the idea that the
residuals of the converted speech could be predicted based
on the converted feature vectors and resulted in the follow-
ing residual prediction technique [6].

In training phase, for each pitch-synchronous frame, we
compute the linear predictive coefficients and convert them
to a cepstral representation. Then, the probability distribu-
tion of the set of all linear predictive cepstral vectors seen in
training is modeled by means of a Gaussian mixture model.
Now, we determine the typical residual magnitude spectra
m,; for each mixture component ¢ by computing a weighted
average of all residual magnitude spectra m,, seen in train-
ing where the weights are the posterior probabilities p(i|vy, )
that a given cepstral vector v,, belongs to the mixture com-

ponent i: N .
m‘ _ Zn:l mnp(lh)’n)
1 T N . .
2 p=1 P(ilvn)

The mixture-dependent phase spectra are taken from the
centroids of each mixture component in the following way:

gpi = spﬁ Wlth ’fl = arg max p(l"l)n) :
n=1,.,N

During operation phase, for each frame, we obtain a con-
verted cepstral vector v that serves as basis for the predic-
tion of the residual magnitude spectrum m by calculating a
weighted sum over all mixture components:

I
m= Zﬁhp(dﬁ) .
i=1

By selecting the most likely mixture component, we can de-
rive the required phase spectrum:

Qo =¢; with 7= arglma)lcp(ih?) .
i =1,...,
To avoid artifacts due to the discreteness of the phase spec-
tra, the trajectories of each harmonic phase are smoothed by

zero-phase filtering with an eight-point Hanning window.

2.3. Residual Selection

The residual codebook method described in the last section
tries to represent an arbitrary residual by a linear combi-
nation of a limited number of prototype residuals. To bet-
ter model the manifold characteristics of the residuals, the
residual selection technique stores all residuals 7,, seen in
training into a table together with the corresponding feature
vectors v, that this time are composed of the line spectral
frequencies and their deltas [4].
In operation phase, we have the current feature vector
v of the above described structure and choose one residual
from the table by minimizing the square error between v and
all feature vectors seen in training (S(v) is the sum over the
squared elements of a vector v):
7=ry with 7 =arg min S(0—v,). (1)
n=1..,
Similar as discussed in Section 2.2, we also have to deal
with an appropriate phase prediction in order to avoid sig-
nal discontinuities. At first, we train a Gaussian mixture
model with I mixture components on the line spectral fre-
quency representation of all target speaker spectra seen in
the training corpus. Now, we introduce the vector P(v) =
[p(1]v),...,p(I|v)]" which consist of the posterior proba-
bilities that vector v belongs to the components 1,...,1,
and a matrix T = [T4,...,T7] which contains the wave-
form templates T{ . In order to determine 7', we minimize
the following square error:

N
€= Z S(s(n) —TP(vy,)),
n=1
where s(n) is the n'h
of 10 ms.

During operation phase, for each frame, we are given a
transformed feature vector v and predict the corresponding
waveform shape as § = T'P(0). Finally, we substitute the
phase spectrum of the current frame by the phase spectrum
of 5 and perform the smoothing described in the last section.

speech frame normalized to a length

3. RESIDUAL PREDICTION: A NOVEL METHOD
Residual Selection and Smoothing

At the beginning of our work on the prediction of appro-
priate residuals, we wondered whether the line spectral fre-
quencies and the corresponding residuals really are suffi-
ciently correlated or if we should not expect a higher corre-
lation between corresponding residuals of source and target
speaker. Accordingly, in addition to the definition of the
feature vector v as described in Section 2.3, we introduced
the following normalized time-domain representation of the



source speech residuals to be used with the error criterion
defined in Eq. 1:
r—7

S(r—7)

b

where 7 is the residual of a source speech frame and 7 its
mean.

The observation that an inadequate phase treatment
leads to a “rough” [6] or “harsh” [4] quality of the con-
verted signal in spite of a sophisticated residual prediction
let us emphasize the paragraphs dealing with phase predic-
tion in Sections 2.2 and 2.3. Besides, the procedures de-
scribed in these sections are only applied to voiced speech
frames, whereas for unvoiced frames, one either copies the
phases from the corresponding source frame [6] or selects
unvoiced target speaker frames from the training corpus [4].

The novel technique described in this section is an inte-
gral approach that tries to simultaneously handle inaccura-
cies of the residual selection and phase prediction as well as
the treatment of unvoiced frames by means of a time-variant
residual smoothing.

We are given the sequence 7 of predicted residual tar-
get vectors derived from Eq. 1, a sequence of scalars o
with 0 < o < 1 that are the voicedness degrees of the
frames to be converted, and the voicedness gain «, cf. Sec-
tion 4.2. At last, we obtain the final residuals by applying a
normal distribution function to compute a weighted average
over all residual vectors ff , the deviation is defined by the
product of voicedness degree and gain:

K
T = ZN(n|k,aak) ST
k=1

This equation can be interpreted as follows: In case of
voiced frames (o =~ 1), we obtain a wide bell curve that
averages over several neighbored residuals, whereas for un-
voiced frames (¢ — 0), the curve approaches a Dirac func-
tion, i.e., there is no local smoothing, the residuals and the
corresponding phase spectra change chaotically over the
time as expected in unvoiced regions.

4. EVALUATION

4.1. The Experimental Corpus

The corpus utilized in this work contains several hundred
Spanish sentences uttered by a female and a male speaker.
The speech signals were recorded in an acoustically isolated

environment and sampled at a sample frequency of 16 kHz,
cf. [9].

4.2. System Architecture and Parameter Settings

From the experimental corpus, we took 10 equivalent sen-
tences of source and target speaker (about 42 s and 39 s) and
extracted the pitch marks by applying the algorithm pro-
posed in [10], since the described techniques require pitch-
synchronous time frames. From the latter, we computed
16" order line spectral frequency vectors (about Sk and 6k

vectors, respectively). After aligning the corresponding sen-
tences of the source and target speaker by means of dynamic
time warping, we performed the parameter training accord-
ing to [3] utilizing a Gaussian mixture model with 4 mixture
components.

Since the training material in our experiment was not
sufficient to reliably train the Gaussian mixture model of
Section 2.2 with the settings specified in [6], we reduced
the number of mixture components from 32 to 8. For the
phase prediction of Section 2.3, we chose 16 mixture com-
ponents. The voicedness degrees required in Section 3 were
determined using the algorithm described in [11]; further-
more, we chose a voicedness gain of v = 3.

Finally, the converted time frames computed by filter-
ing the predicted residuals with the respective line spec-
tral frequencies are concatenated using time domain pitch-
synchronous overlap and add [12].

4.3. Subjective Evaluation
The goal of the subjective evaluation of the described resid-
ual prediction techniques is to answer two questions:

e Does the technique change the speaker identity in the
intended way?

e How does a listener assess the overall sound quality
of the converted speech?

The answers we want to find by means of the extended ABX
test and the mean opinion score (MOS) evaluation described
in [13].

From the experimental corpus, we took 3 sentences of
the female and the male speaker (about 14 s and 13 s, re-
spectively) and tried to convert these sentences in both di-
rections: female-to-male (f2m) and male-to-female (m2f).

In our evaluation, we considered the following residual
prediction techniques:

e source residuals: the source residuals are copied

e rarget residuals: time-aligned reference residuals are
used

e codebook method
e residual selection

e selection & smoothing: residual selection based on
line spectral frequencies and their deltas and smooth-
ing

e selection® & smoothing: residual selection based on
source residuals and smoothing

Now, 10 evaluation participants, 8 of whom specialists in
speech processing, were asked if the converted voice sounds
similar to the source or to the target voice or to neither of
them (extended ABX test). Furthermore, they were asked
to assess the overall sound quality of the converted speech
on an MOS scale between 1 (very bad) and 5 (very good).
Table 1 reports the results of the extended ABX test and
Table 2 those of the MOS rating depending on the residual
prediction technique and the gender combination.



% source | target | neither
source residuals 20 10 70
reference residuals 0 79 21
codebook method 0 70 30
residual selection 0 70 30
selection & smoothing 0 85 15
selection* & smoothing 0 80 20

Table 1. Results of the extended ABX test

m2f f2m total

source residuals 3.2 3.7 3.5
reference residuals 3.0 3.0 3.0
codebook method 1.6 1.9 1.8
residual selection 1.7 2.3 2.0
selection & smoothing 22 2.9 2.6
selection* & smoothing 2.2 2.8 2.5

Table 2. Results of the MOS test

5. INTERPRETATION

Addressing the first question that we asked in Section 4.3,
we find that all assessed techniques succeed in converting
the source voice to the target voice in more than 70% of
the cases, cf. Table 1. The only exception is the use of the
source residuals where the majority of the listeners had the
impression of hearing a third speaker as we have already
expected in Section 2.1. The novel residual selection tech-
nique with smoothing shows the highest conversion perfor-
mance even higher than using the time-aligned reference
residuals.

When we have a look at Table 2, we note that using
unprocessed residuals produces the highest speech quality.
Applying the reference residuals works slightly worse as the
time-alignment based on dynamic time warping sometimes
results in prosodic artifacts. However, we have to empha-
size again that the reference speech is not given in a real
world situation; we only considered this procedure to ob-
tain a standard of comparison.

Having a look at the remaining techniques that suc-
ceeded in converting the source to the target voice, we see
that the residual selection technique with smoothing outper-
forms the others in terms of speech quality although the
absolute MOS scores (about 2.5) show that there is still a
need for improvement. Past experiments on voice conver-
sion techniques that explicitly are to ”introduce as few dis-
tortions as possible” [14] while ignoring the success of the
speaker identity conversion resulted in MOS scores about
3.0 [14], also on the same corpus [13].

Finally, we want to answer the question of Section 3 for
the correlation between vocal tract parameters and residuals
or source and target residuals, respectively. The outcomes
of the ABX as well as the MOS evaluation show that there

is no significant difference between the residual selection
based on the one and the other. Consequently, both correla-
tions are appropriate to our task, an observation that leads to
the idea of using both the source residual and the converted
vocal tract parameters to better predict the target residuals.
This is to be subject to future investigations.

6. CONCLUSION

In this paper, we compared several residual prediction tech-
niques to be used for voice conversion. The presented resid-
ual selection technique with smoothing outperforms the oth-
ers in terms of voice conversion performance and speech
quality. However, subjective tests show that, in general,
voice conversion still perceptibly deteriorates the quality of
the source speech whereas most of the compared techniques
succeed in converting the speaker identity.
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