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Abstract
In this work, the RWTH automatic speech recognition systems

developed for the second TC-STAR evaluation campaign 2006 are
presented. The systems were designed to transcribe parliamen-
tary speeches taken from the European Parliament Plenary Ses-
sions (EPPS) in European English and Spanish, as well as speeches
from the Spanish Parliament. The RWTH systems apply a two
pass search strategy with a fourgram one-pass decoder including a
fast vocal tract length normalization variant as first pass. The sys-
tems further include several adaptation and normalization meth-
ods, minimum classification error trained models, and bayes risk
minimization. For all relevant individual components contrastive
results are presented on the EPPS Spanish and English data.
Index Terms: speech recognition, speaker normalisation, VTLN

1. Introduction
The TC-STAR (Technology and Corpora for Speech to Speech
Translation) project [1] is envisioned as a long-term effort
to advance research in all core technologies for Speech-to-
Speech Translation (SST), including Automatic Speech Recog-
nition (ASR), Spoken Language Translation (SLT) and Text to
Speech (TTS) (speech synthesis). The project targets a selec-
tion of unconstrained conversational speech domains (speeches
and broadcast news) and three languages (British English, Euro-
pean Spanish, and Mandarin Chinese). For the TC-STAR project,
language resources (LR) for English and Spanish parliamentary
speeches were collected for training and system development, as
well as the TC-STAR evaluation campaigns. Within the restricted
conditions of the TC-STAR evaluations the training data is re-
stricted to these LR. This paper describes in detail the English
and Spanish RWTH ASR system which were developed for the
restricted condition of the TC-STAR Second Evaluation Cam-
paign 2006. The systems comprises a one-pass fourgram de-
coder including fast vocal tract length normalization (VTLN), con-
strained maximum likelihood linear regression (CMLLR) includ-
ing speaker adaptive training (SAT), maximum likelihood linear
regression (MLLR), discriminative training including minimum
classification error (MCE) training, as well as Bayes risk mini-
mization (MBR). Further internal system combination, including
ROVER or confusion network combination (CNC), did not result
in further improvements.

2. Language Resources
2.1. Data

The English and Spanish LR both contain recordings from the Eu-
ropean Parliament Plenary Sessions (EPPS), whereas the Spanish
LR additionally include speeches from the Spanish Parliament and
Congress (SPC). Approximately 100h of speech recordings per
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uage were manually transcribed. These verbatim transcrip-
s (VT) include a segmentation into sentence like units, speaker
ls, and topic headings.
The web site of the European Parliament [2] provides all EPPS
rts since April 1996 translated in all official languages of the
These documents are known as the final text edition (FTE)
differ notably from the VT as the FTE aims for high read-

ity. Table 1 specifies the data used for language modelling.
recordings, the corresponding manual transcripts, and the text

were produced by Universitat Politècnica de Catalunya (UPC)
RWTH Aachen University. Table 2 gives the statistics of the
stic training data used in the RWTH system. Development
evaluation sets were provided by ELDA. The English and

nish EPPS development and evaluation sets each consisted of
t three hours of speech, plus 4h of Spanish parliament data for

uation. Table 3 gives an overview of the corpora.

Table 1: Text resources available for language modelling.
running words

transcriptions FTE Spanish SPC
English 781,649 33,894,405 -
Spanish 516,936 35,190,383 47,181,386

e 2: Transcribed recordings from the EPPS (both) and SPC
nish) domain available for acoustic modelling.

English Spanish

Acoustic Data [h] 87.5 91.3
# Segments 66,670 101,608
# Running Words 704,883 743734

Lexicon Modeling

recognition word lists were derived from the restricted do-
n data as described in Sec. 2.1. The available textual data was
ned up and normalized, using a manually defined set of rules
semi-automatic methods. The word lists were produced as fol-
. All words from the verbatim transcriptions occuring at least
e were chosen. For the additional textual data a cut-off value
calculated requiring an out-of-vocabulary (OOV) rate below
percent on the development and a final lexicon of at least 50k
ds.
The English pronunciation lexicon was derived from the
ish English Example Pronunciation Dictionary (BEEP). The
nish pronunciation lexicon was derived from the lexicon of the
STAR project [3]. Using the dictionaries statistical grapheme-
honeme conversion models were trained [4] for Spanish and
lish. The models were used to produce pronunciations for
ds not covered by the original lexica. In Table 3 the lexicon
stics on the development and evaluation data are presented.
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Table 3: Development and evaluation data from the EPPS domain,
and from the SPC domain (for evaluation Spanish only).

English Spanish
Dev Eval Dev Eval (+SPC)

Audio [h] 3.2 3.2 2.4 6.9
# Run. wrd 27,029 29,829 20,982 60,039
# Speakers 41 41 31 63

Vocab size 52,429 60,156
4-gram PP 99.7 108.7 78.2 88.9
OOV [%] 0.81 0.58 0.61 1.22

2.3. Handling of OOV Words

We had originally assumed that the EPPS task would exhibit a very
high lexical diversity leading to inevitably high out-of-vocabulary
(OOV) rates. To address this problem an open vocabulary recogni-
tion approach was examined. In this so-called flat hybrid approach
we augment the recognition vocabulary by a set of word fragments
each consisting of a short sequence of phonemes with associated
spelling information. The set of fragments is derived from the
baseline pronunciation dictionary using a maximum likelihood cri-
terion. The language model used by the recognizer is estimated
from a modified version of the training corpus where each OOV
word is replaced by its most likely sequence of fragments. This
technique has been applied quite successfully on the Wall Street
Journal database [4]. We have tried the identical techniques on
the EPPS data, however without success: OOV words were recog-
nised only very rarely, while spurious insertions of small fragments
increased the overall error rate. We attribute this failure to the sur-
prisingly low lexical diversity of the EPPS task. A low frequency
of OOV words in training causes the estimation of the ”OOV part”
of the model to be unreliable, due to lack of data. At the same
time a low OOV rate in testing means that false alarms may easily
exceed the potential improvement from OOV detection.

3. Acoustic Modeling
3.1. Baseline Acoustic Modeling

The acoustic front end comprises Mel-Frequency Cepstral Coef-
ficient (MFCC) features derived from a bank of 20 filters. 16
cepstral coeficients including the zeroth coefficient were used,
and cepstral mean normalization was applied. The MFCC fea-
tures were augmented with a voicedness feature [5]. The MFCCs
and voicedness features from nine consecutive frames were con-
catenated and a linear discriminative analysis (LDA) was used to
project the resulting vector to 45 dimensions.

Acoustic models were triphone based Gaussian mixture mod-
els (GMMs) with a globally pooled diagonal covariance matrix.
The triphones were top down clustered using CART, rendering
4501 generalized triphone states.

The baseline acoustic models were maximum likelihood
(ML)/Viterbi trained using the manually transcribed training data
provided for the restricted condition, cf. Sec. 2.1 and Table 2.

3.2. Speaker Normalization and Adaptation

Three different approaches were used in combination to compen-
sate for the acoustical variations due to speaker differences. First, a
fast one-pass variant of Vocal Tract Length Normalization (VTLN)
was applied to the filterbank within the MFCC extraction both in
training and testing. The fast VTLN performs warping factor esti-
mation using GMMs trained on a subset of the training corpus, for
wich warping factors were estimated using the usual grid search.
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Speaker adaptive training (SAT) based on Constrained Max-
m Likelihood Linear Regression (CMLLR) [6] was used to
pensate for speaker variation in both training and testing. The
ple Target Model (STM) approach [7] was used, since results in
ndicate that it outperforms the standard CMLLR-SAT method
As target model an acoustic model with a single Gaussian per
trained on VTLN features was used. As a contrast experi-

t, when no SAT was used in acoustic model training, standard
LLR was performed in recognition.

Finally, Maximum Likelihood Linear Regression (MLLR)
applied to the means of the acoustic model in recognition. A
ession class tree was used to adjust the number of regression
ses to the amount of data available.

Since both CMLLR and MLLR are text dependent, a two pass
p is needed. Also, since CMLLR is carried out in a speaker
ndent manner, and since no speaker identities were provieded
e evaluation, an automatic speaker labeling was done. For
the speaker labels provided in the training data was used. The

ils of the two-pass system is described in Sec. 5.2.

Discriminative Training

efine the ML trained acoustic model discriminative training
performed. Here the Maximum Mutual Information (MMI)
rion and the Minimum Classification Error (MCE) criterion
used as they have proven to perform best in our system. For

xperiments the lattice based MCE was taken, which was orig-
ly presented in [8] for a large vocabulary speech recognition
. As in ML training, only the manually transcribed training
was used. The discriminative training was initialized with the
trained acoustic model.

The word-conditioned word lattices used in training were gen-
d with the VTLN/voicedness system in combination with a bi-
language model. For MCE the spoken word sequence needs

e contained in the lattice. To guarantee this the best alignment
e spoken word sequence was merged into the training lattices.
acoustic rescoring during discriminative training iterations the
t match approach was used, i.e. the word boundary times were
fixed. The optimal number of training iterations was deter-

ed by a recognition on the development corpus and was about
The resulting models comprise about 800–900k Gaussians.

4. Language Modeling
Baseline Language Modeling

language model (LM) training also was done using the re-
ted task data. For English, the data includes the transcriptions
e acoustic training data and the FTE data. From both data
we trained seperate case sensitive fourgram LMs. The applied
othing was modified Kneser-Ney discounting with interpola-
. The final LM was the result of a linear interpolation of the
preliminary models, where the interpolation weights were op-
zed on the English development set. We used the SRI Lan-
e Modeling Toolkit to build and interpolate the LMs [9]. For

lish the optimal weights were 0.71 for VT and 0.29 for FTE.
Spanish additional restricted data from the Spanish Parliament

) was used. Thus, three preliminary LMs were built. The lin-
interpolation weights were optimized in a grid search on the
nish development data. The optimal weights were: VT: 0.53,
: 0.15, and SPC: 0.32. Table 3 gives the perplexities of the

l LMs on the development and evaluation data.



4.2. Punctuation Modeling

For punctuation a sentence segmentation algorithm, also applied
by the RWTH SLT system was used. For each estimated sentence
break, a full stop is inserted; no further punctuation marks were
produced. The segmentation approach originates from [10]. A
decision for placing a segment boundary is made based on a log-
linear combination of language model and prosodic features. In
contrast to existing approaches, an explicit optimization over the
number of words in the segment is performed by adding a length
model feature. For a more detailed presentation of this method, see
the presentation of the RWTH spoken language translation system
[11].

5. Search Issues
5.1. Baseline One-Pass Recognizer

The RWTH baseline system realizes a one-pass fourgram Viterbi
decoder using 6-state left-to-right HMM cross-word generalized
triphone models. HMM states are tied pairwise such that each 6-
state HMM is modeled by three separate Gaussian mixture dis-
tributions. A phonetic decision tree is used for tying the tri-
phone models. The baseline system uses voicedness features
(cf. Sec. 3.1) and fast VTLN (cf. Sec. 3.2).

5.2. Two-Pass Speaker Adapted System

As described in Sec. 3.2, a two-pass search strategy is used to fa-
cilitate speaker adaptation. The first pass was performed using the
baseline VTLN/voicedness system, with the ML estimated acous-
tic model. Since no fine-grained segmentation of the data was pro-
vided in the evaluation, the complete recordings were used as input
to the system. The recordings varied in length between a couple
of minutes and half an hour. The silence information from the first
recognition pass is used to segment the audio data for the second
pass. The segment breaks are chosen at the longest silence regions
in such a way that no segment is longer than 35s, while keeping
the number of segments at a minimum. To provide a speaker label-
ing, a generalized likelihood ratio based segment clustering with a
Bayesian information criterion based stopping condition was ap-
plied to the segmented recognition corpus [12]. The segmented
and clustered corpus was used to estimate the CMLLR and MLLR
matrices needed by the adaptation. The second pass finally was
performed using the best acoustic models, discriminatively trained
on the CMLLR-SAT transformed features, and adapted using the
estimated CMLLR and MLLR matrices.

5.3. Bayes Risk Minimization

The quality of a speech recognition system is typically assessed
by its word error rate (WER). However, the standard decision rule
is based on minimizing the Bayes risk using the sentence instead
of the word error count as cost function. As a consequence, a
rescoring pass using the Minimum Bayes Risk (MBR) criterion
with a WER based cost function was applied. The experiments
reported here were carried out with the algorithm proposed in [13]
which is applied on N -best lists.

6. Experiments
The experiments described in this paper were done in the context
of the second TC-STAR ASR evaluation campaign. To monitor
the progress of the system development several recognition exper-
iments were performed comparing the effectiveness of different
methods applied. Due to the large number of available methods,
not all possible combinations were investigated.
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Since the evaluation data certainly was not available before-
, not all contrast experiments carried out on the development
were performed on the evaluation data. For Spanish, the de-

pment was mainly carried out on the EPPS part of the devel-
ent corpus.

Baseline System

described in Sec. 5.1 the baseline system already included
N and voicedness features. As a contrast, and for use in sys-
combination, experiments were also performed with a plain
line without VTLN and voicedness. Table 4 summarizes the
lts comparing the two baseline systems, both for English and
nish.

Table 4: Baseline WER [%] on EPPS development data.
English Spanish

Baseline 18.5 13.2
VTLN+voice 17.2 11.9

Speaker Adaptation

top of the ML baseline system already including VTLN, four
rent adapted systems were used, differing w.r.t. SAT model,
MLLR usage. Table 5 show the performance of the different
ems for English and Spanish on the development corpora used.
le SAT gives a clear improvement in the case without MLLR,
with MLLR was not observed to lead to further improve-

ts. On the other hand, when SAT is used the improvement of
LR is somewhat inconclusive: for English the improvement is
tantial, but for Spanish it is neglectable. Note that for Spanish,
aseline already contains an improved language model.

Table 5: Adaptation WER[%] on EPPS development data.
English Spanish

Baseline 17.2 10.7
CMLLR 15.7 9.2
SAT 15.2 8.6
CMLLR+MLLR 14.0 8.6
SAT+MLLR 14.0 8.6

Discriminative Training

e 6 summarizes the improvements resulting from discrimina-
training. Note that discriminative training in combination with
LR did not perform consistently: for English discriminative
ing is beneficial whereas for Spanish the word error rate even

eases. However, CMLLR-SAT combined with discriminative
ing and MLLR yields improvements on both corpora (see also
ussion in Sec. 6.5). Furthermore, MCE slightly outperformed
I.

e 6: Discriminative training performance (WER[%]) on EPPS
lopment data.

English Spanish

MLLR 14.0 8.6
MLLR+MMI 13.6 8.8
MLLR+MMI+SAT 13.3 -
MLLR+MCE+SAT 13.1 8.0

Bayes Risk Minimization

e 7 compares the results for the best two-pass, SAT-based, dis-
inatively trained systems with and without using MBR. In En-
a marginal improvement was obtained whereas in Spanish



no improvement could be observed. The observed reduced per-
formance may be due to the relatively low error rates obtained for
these tasks.

Table 7: Performance of Bayes risk minimization (WER[%]) on
EPPS development data.

English Spanish

No MBR 12.9 7.8
MBR 12.8 7.8

6.5. Summary of Results

Tables 8 and 9 show the chronological progression of the results
during the preparation for the evaluation campaign1, as well as the
corresponding results for the evaluation corpus, where available.
Note that while the separate improvements of STM-SAT and dis-
criminative training were small, the combined improvement was
larger than the sum of the separate improvements, when compared
to a ML trained system with both CMLLR and MLLR. A simi-
lar effect has been described in [14], where discriminative training
was reported to give larger improvements when the system is using
SAT and MLLR, as compared to only using MLLR.

Table 8: Overview of English system performance (WER[%]).
Dev Eval

Baseline 18.5 -
+VTLN+voice 17.2 14.4
+CMLLR 15.7 -
+MLLR 14.0 11.8
+MMI 13.6 11.7
+SAT 13.3 10.8
+New LM 12.9 10.3
+MBR 12.8 10.2

Table 9: Overview of Spanish system performance (WER[%]).
Note that the evaluation data contains EPPS and STC data.

Dev Eval

Baseline 13.2 -
+VTLN+voice 11.9 -
+New LM 10.7 16.1
+MLLR 8.6 11.3
+MCE 8.8 11.1
+SAT 8.0 -
+Tuning 7.8 10.2

7. Conclusions & Outlook
In this work, the RWTH automatic speech recognition systems de-
veloped for the second TC-STAR evaluation campaign 2006 were
presented. The systems were designed to transcribe parliamen-
tary speeches taken from the European Parliament Plenary Ses-
sions (EPPS) in European English and Spanish, as well as speeches
from the Spanish Parliament. Using a two-pass decoding strategy a
number of improvements could be obtained. Using several speaker
adaptation and normalization schemes, speaker adaptive training,
MCE and MMI training, and Bayes risk minimization, the overall
improvement obtained on top of the baseline system ranged up to
about 2/3. For all relevant system components, contrastive results
are presented on the EPPS Spanish and English data. In addition
experiments on system combination were performed but not used

1The entry Tuning refers to language model scale tuning
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e final evaluation. These experiments are described in [15].
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