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Abstract
In this work, fundamental properties of Bayes decision rule us-
ing general loss functions are derived analytically and are ver-
ified experimentally for automatic speech recognition. It is
shown that, for maximum posterior probabilities larger than
1/2, Bayes decision rule with a metric loss function always
decides on the posterior maximizing class independent of the
specific choice of (metric) loss function. Also for maximum
posterior probabilities less than 1/2, a condition is derived un-
der which the Bayes risk using a general metric loss function is
still minimized by the posterior maximizing class. For a speech
recognition task with low initial word error rate, it is shown
that nearly 2/3 of the test utterances fulfil these conditions and
need not be considered for Bayes risk minimization with Lev-
enshtein loss, which reduces the computational complexity of
Bayes risk minimization. In addition, bounds for the difference
between the Bayes risk for the posterior maximizing class and
minimum Bayes risk are derived, which can serve as cost esti-
mates for Bayes risk minimization approaches.

1. Introduction
In speech recognition, the standard evaluation measure is word
error rate (WER). On the other hand, the standard decision rule
for speech recognition (maximization of the sentence posterior
probability) is realized by using a sentence error based (or 0-
1 ) cost function for Bayes decision rule. Due to the complexity
of the Levenshtein alignment needed to compute the number of
word errors, it was prohibitive to use the number of word errors
as cost function for Bayes decision rule for a long time. Nev-
ertheless, with the constant increase in computing power and
with algorithmic improvements, word error minimizing deci-
sion rules became more realistic. Consequently, a number of ap-
proaches were presented in literature which investigate efficient
approximate realizations of word error minimizing Bayes deci-
sion rules. In these approaches, approximations were done at
different levels: search space, summation space for expected
loss calculation, and the loss function itself. In [5], the search
space as well as the expected loss calculation were reduced
to N -best lists. In [1, 2], the search space is represented by
word graphs and the expected loss calculations are performed
on the tree of partial hypotheses which define the stack of an A∗

search with a specific choice of cost estimates. In [4], the search
space/summation space for expected risk calculation is approx-
imated by consensus lattices, for which the expected loss calcu-
lation as well as the search become much more efficient. Finally
in [6], the cost function itself is modified, i.e. the word error cost
is replaced by a frame-wise word error based on forced align-
ments. In [6], it can be observed that the relative improvements
obtained with a word error minimizing decision rule increase
with the baseline error rates.

Of all these approaches, the word graph based A∗ search
for word error minimization presented in [1, 2] is closest to the
correct Bayes decision rule. In fact, the method presented in [1,
2] would be exact if it was not for the necessity of pruning,
which, in this case, does not only reduce the search space as
usual, but also has an effect on the decision within the remaining
search space, as will be shown in this work (cf. Section 3.5).

In literature, word error minimizing Bayes decision rules
are often called “Minimum Bayes Risk”. This is somewhat
misleading, since the standard approach also minimizes the
Bayes risk - but by using a sentence error or 0-1 loss func-
tion. The important difference lies in the cost function used,
which usually counts word errors or sentence errors.

In this work, Bayes decision rule is analyzed on a more
fundamental level. We present a number of properties of the
Bayes decision rule, mainly concerning the relation between us-
ing a 0-1 loss function (e.g. sentence errors) and a general
loss function, such as phoneme/character/word errors in speech
recognition and machine translation, or position independent
word error in machine translation, to name but a few. We
present analytic results, simulations, as well as speech recog-
nition results for a small and large vocabulary.

The remainder of this work is organized as follows. After
a general introduction to Bayes decision rule in Sec. 2, we de-
rive bounds for the difference in Bayes risk between a 0-1 and
a general loss function in Sec. 3. In Sec. 3 we also show that,
under certain conditions, the decisions with 0-1 and with gen-
eral loss function are identical, for one of the conditions even
independent of the explicit choice of general (metric) loss func-
tion. It is shown that, in some cases, the class posterior distri-
bution dominates the decision, and in other cases, the structure
of losses dominates the decision. In Sec. 4, we provide exper-
imental evidence of the analytic results derived for the case of
automatic speech recognition.

2. Bayes Decision Theory
Consider the class posterior distribution p(c|x) for classes c
given an observation x. Since the derivations given in this work
do not depend directly on the specific choice of class and ob-
servation, for simplicity all considerations and derivations are
given using abstract classes and observations unless otherwise
specified. All derivations are valid for complex class definitions
like word sequences in speech recognition and machine transla-
tion.

In its general form, i.e. using a general loss function
L(c, c′), Bayes decision rule results in the class minimizing the
expected loss:

rL(x) = argmin
c

X

c′

p(c′|x)L(c′, c)

= argmin
c

RL(c),



with the expected loss, or Bayes risk RL(c) for class c:

RL(c) :=
X

c′

p(c′|x)L(c′, c).

In particular using the 0-1 loss function, Bayes decision rule
can be reduced to finding the class which maximizes the class
posterior probability:

r0−1(x) = argmax
c

p(c|x).

Due to complexity reasons, in speech recognition and machine
translation the Bayes decision rule based on the 0-1 loss func-
tion is usually applied, i.e. the sentence error rate is usually
minimized. Therefore in the following, a number of general
properties of Bayes decision rule using a general loss function
in contrast to using a 0-1 loss function are derived.

For simplicity, in the following, we will drop the
observation- or x-dependence of the posterior probability and
use cmax for the class which maximizes the class posterior prob-
ability, and cL for the class which minimizes the Bayes risk for
loss function L.

3. Analysis of Bayes Decision Rule
with General Loss Functions

In the following, general properties of Bayes decision rule will
be presented for the case of general loss functions which ful-
fil the properties of a metric. A metric loss function is pos-
itive, symmetric, and fulfils the triangle inequality. A metric
loss function is zero if and only if both arguments are equal.

3.1. Loss-Independence of the Bayes Decision Rule for
Large Posterior Probabilities

Assume a maximum posterior probability p(cmax) ≥ 1
2

and a
metric loss L(c, c′). Then the posterior maximizing class cmax

also minimizes the Bayes risk.
Proof: Consider the difference between the Bayes risk for class
cmax and the Bayes risk for any class c′:

RL(cmax) −RL(c′) =
X

c

p(c)L(c, cmax) −
X

c

p(c)L(c, c′)

= − p(cmax)
| {z }

≥ 1

2
≥

P

c6=cmax
p(c)

L(cmax, c
′) +

X

c6=cmax

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

≤ −
X

c6=cmax

p(c)
ˆ
L(c, c′) + L(c′, cmax) − L(c, cmax)

˜

| {z }

≥ 0 (triangle inequality)

≤ 0.

(1)

It can be shown that the Levenshtein distance function fulfils
the properties required for a metric. Therefore the above proof,
among others, is valid for e.g. phoneme, character, and word
error loss functions. The same applies to the position indepen-
dent word error rate, provided that classes are word sets instead
of sequences and that the posterior probabilities for permuta-
tions of a given word sequence are summed up to produce the
posterior probability of a word set.

Using the above derivation for large posterior probabilities,
a broad estimate can be calculated, which shows where word
error minimization can be expected to result in different deci-
sions than sentence error minimization or posterior probability
maximization respectively. Assume a task has an expected word
error rate of r. In addition assume the words in a sentence to be

statistically independent. Then the average posterior probabil-
ity p for a sentence of length M would be p = (1− r)M . From
Eq. (1), we know that only for maximum posterior probabilities
p(cmax) < 1/2 we can expect a difference between sentence and
word error minimization. Therefore, if word error minimization
is to make any difference, the expected word error rate r needs
to fulfil the following approximate inequality r & 1− (1/2)

1

M .
For example, if a sentence is 18 words long, the word error
rate needs to be larger than 4% so that word error minimization
makes some difference.

3.2. Dominance of Maximum Posterior Probability

Now we assume the maximum posterior probability is less
than 1/2 and the loss function L(c, c′) is a metric. Then the
class maximizing the posterior probability also minimizes the
Bayes risk if a set C of classes can be found for which the fol-
lowing requirements are met:

cmax /∈ C
X

c∈C

p(c) ≥ 1 − 2p(cmax) + max
c∈C

p(c) (2)

L(c, cmax) ≤ L(c, c′) ∀ c, c′ ∈ C. (3)

Proof: Consider again the difference between the Bayes risk for
class cmax and the Bayes risk for any class c′:

RL(cmax) −RL(c′) =
X

c

p(c)L(c, cmax) −
X

c

p(c)L(c, c′)

=
ˆ
p(c′) − p(cmax)

˜
L(cmax, c

′)

+
X

c6=cmax,c′

p(c)
ˆ
L(cmax, c) − L(c′, c)

˜

(2)
≤

X

c/∈C∪{cmax}

L(cmax, c
′)

+
X

c6=cmax,c′

p(c)
ˆ
L(cmax, c) − L(c′, c)

˜

= −
X

c/∈C∪{cmax}

p(c)
ˆ
L(c, c′) + L(c′, cmax) − L(c, cmax)

˜

| {z }

≥ 0 (triangle inequality)

+
X

c∈C\{c′}

p(c)
ˆ
L(cmax, c) − L(c′, c)

˜

≤
X

c∈C\{c′}

p(c)
ˆ
L(cmax, c) − L(c′, c)

˜ (3)
≤ 0.

(4)

As a special case, condition (3) is fulfilled if the following in-
equality is fulfilled:

L(c, cmax) ≤ 1 ∀ c ∈ C. (5)

Note that Ineq. (5) can be checked much more efficiently than
Ineq. (3). Therefore, the efficiency of Bayes risk minimization
using a general, non- 0-1 loss function can be improved by
using Ineq. (1), and Ineq. (4) together with Ineq. (5) to shortlist
those test samples, for which a difference to using a 0-1 loss
function can be expected. All remaining samples can be classi-
fied using the more efficient 0-1 loss function.

3.3. Upper Bounds of Risk Difference

In the case of a maximum posterior probability p(cmax) < 1
2

and
a metric loss L(c, c′), the following upper bound can be derived



for the difference between the Bayes risk for class cmax and the
Bayes risk for any class c′:

RL(cmax) −RL(c′)

=
X

c

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

=p(c′)L(c′, cmax) − p(cmax)L(cmax, c
′)

+
X

c6=cmax,c′

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

| {z }

≤ L(cmax, c
′) (triangle ineq.)

≤ [1 − 2p(cmax)]L(cmax, c
′).

(6)

Replacing c′ by the class cL which minimizes the Bayes risk,
then Ineq. (6) leads to the following upper bound:

RL(cmax) −RL(cL) ≤ [1 − 2p(cmax)]L(cmax, cL). (7)

For the following specific choice, Ineq. (7) can be shown to be
tight:

L(c, cL) = 1 ∀ c ∈ C, (8)
L(c, cmax) = L(cmax, cL) + 1 ∀ c ∈ C. (9)
L(c, c′) = L(cmax, cL) + 1 ∀ c, c′ ∈ C, (10)

Note that the special choice made in Eqs. (8-10) in gen-
eral are not realizable for all combinations of vocabulary
size, string length, loss function, and maximum posterior
probability p(cmax). In the case of 1

3
≤ p(cmax) ≤ 1

2
, a

single element c ∈ C is sufficient to show the tightness of
the derived upper bound. The upper bound can be reached
with the choice p(cL) = p(cmax), p(c) = 1 − 2p(cmax) and
L(c, cmax) − L(c, cL) = L(cmax, cL). There are also examples
for the upper bound not being tight. For strings of length N
and a loss function only allowing substitutions, the loss cannot
exceed N . For L(cmax, cL) = N , condition 9 cannot be fulfilled
since it would require L(c, cmax) = N + 1, which cannot occur
in the case of such a loss function.

Another upper bound can be found using the following def-
inition of the set of classes Cε:

Cε := {c|L(c, cmax) ≤ ε} (11)

with
ε := min

n

λ
˛
˛
˛

X

c′:L(cmax,c′)≤λ

p(c′) ≥
1

2

o

(12)

For the case c′ /∈ Cε the following inequality can be derived:

RL(cmax) −RL(c′) =
X

c

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

= − p(cmax)L(cmax, c
′)

+
X

c∈Cε\cmax

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

| {z }

≤ 2ε − L(cmax, c
′)

(triangle ineq.)
and Eq. (11)

+
X

c/∈Cε

p(c)
ˆ
L(c, cmax) − L(c, c′)

˜

| {z }

≤ L(cmax, c
′) (triangle ineq.)

≥
ˆ
1 − 2

X

c∈Cε

p(c)
˜

| {z }

≥0

L(cmax, c
′)

| {z }

≥ε

+2ε
ˆ X

c∈Cε

p(c) − p(cmax)
˜

≥ [1 − 2p(cmax)] ε ∀ c′ /∈ Cε.

For the case of c′ ∈ Cε we can apply Ineq. (6) to obtain the
same inequality. Therefore we obtain:

RL(cmax) −RL(c′) ≤ [1 − 2p(cmax)] ε ∀ c′. (13)

Note that L(cmax, cL) is needed for Ineq. (6), for which word
error minimization would have to be performed. In contrast to
this, ε can be found efficiently, i.e. with complexity linear in
the number of classes. Ineq. (13) can be used to delimit over-
estimates as they are used in A∗-based Bayes risk minimization
approaches as presented in [1, 2].

3.4. Minimum Risk with Zero Posterior Probability

Consider the example shown in Fig. 1, where four character
strings are shown at the nodes of the graph. The Levenshtein
loss is given at the arcs of the graph, and the posterior probabil-
ities of the sequences are shown at the nodes. The Bayes risk
for the four strings then gives:

RL(ded) = 1 RL(aded)=2(1 − p2)

RL(dgd) =2(1 − p1) RL(dedb)=2(1 − p3).

Provided all posterior probabilities are less than 1/2, i.e. pi <
1/2 ∀ i = 1, 2, 3, the loss for string “ded” will be minimal
even though its posterior probability is zero1. From the example
it becomes clear that “ded” wins since it is the most consistent
hypotheses.

3.5. Pruning and General Loss Functions

In [1, 2] an approach to word error minimization is presented,
which uses A∗ search and cost estimates using partial hypothe-
ses to find the sentence hypotheses minimizing the expected
word error rate. In this approach, the search space and the
summation space for the expected loss calculation are the same.
Without pruning this approach still is exact. In the following
we will show that pruning not only reduces the search space but
also alters the decision for the remaining search space. Con-
sider the example from Section 3.4 with the following posterior
probabilities: p1 = 2

9
, p2 = 3

9
, and p3 = 4

9
. If we apply

the algorithm presented in [1, 2] to the example, then without
pruning, we obtain the correct class “ded” which minimizes
the Bayes risk using the Levenshtein loss. But if we prune the
worst hypothesis (with respect to Bayes risk) “dgd” at some
stage of the word error minimizing search, then the result would
be “dedb” instead, which would be correct for the remaining
subspace as indicated in [1, 2], but it would be incorrect with
respect to the complete space.

ded dgd

dedb aded

1

1
1

2
2

2

p 0=0 p 1

p 2p 3

Figure 1: Example for the case of a string with zero posterior
probability (“ded”) resulting in minimum Bayes risk. The arcs
of the graph show the-based Levenshtein distance between all
strings shown.

1In practice a zero posterior probability for “ded” could mean that
it has been pruned before applying word error minimization.



3.6. Simulations

Bayes risk minimization using stochastic simulations of fully
dependent posterior distributions for the cases of word se-
quences with Levenshtein based word error loss function and
for word sets with position independent word error loss were
performed. Due to the exponential complexity of the simu-
lations, only low sequence lengths/set cardinalities as well as
small vocabulary sizes were considered. All results obtained
were consistent with the analytic results presented.

4. Experiments
To verify the analytic results derived in Sec. 3, we performed
speech recognition experiments using the WSJ0 corpus with a
vocabulary of 5k words. The baseline recognition system [3]
uses 1500 generalized triphone states plus one silence state,
Gaussian mixture distributions with a total of about 147k den-
sities with a single pooled variance vector. 33-dimensional ob-
servation vectors are obtained by Linear Discriminant Analysis
(LDA) based on 5 consecutive vectors consisting of 12 MFCCs,
their first derivatives and the second derivative of the energy,
which are extracted at a 10ms frame shift. The system was
trained on the WSJ0 training corpus (15h speech) and a trigram
language model was used. The baseline word error rate (WER)
is 3.97% on the ARPA WSJ0 Nov. ′92 corpus using the standard
decision rule maximizing the sentence posterior probability.

The experiments for word error minimization were per-
formed using N -best lists [5] with N = 10, 000 to ensure
proper normalization of the posterior probabilities. The search
for the minimum Bayes risk using the Levenshtein loss function
was always started of by calculating the risk for the posterior
maximizing word sequence first, which served as an initial risk
pruning threshold. Note that pruning here is only performed
on the search space to stop the summation for a hypotheses
once the risk exceeds the risk for an already existing hypothe-
sis. In Table 1 the recognition results using Bayes decision rule
with 0-1 loss (sentence error minimization) and with Leven-
shtein loss (word error minimization) are summarized. In 54%
of the utterances the maximum posterior probability is greater
or equal to 1/2, i.e. the decision is the same for 0-1 and Leven-
shtein loss function, as shown in Sec. 3.1. This is also the case in
another 8% of the utterances where the Ineqs. (2) and (5) hold.
Hence, for nearly 2/3 of the utterances, Bayes risk minimization
is proven to result in the posterior maximizing class! Therefore,
word error minimization here would have to be performed for
only about 1/3 of the utterances, which reduces the computa-
tional complexity. Here, it can also be observed that word error
minimization only gives a marginal improvement in word error
rate from 3.97% for sentence error minimization down to 3.88%
for word error minimization.

Table 1: Analysis of word error minimization on the ARPA
WSJ0 Nov. ′92 corpus. Results are presented for sub-corpora
based on the following conditions: a) p(cmax) ≥ 1/2 (cf.
Sec. 3.1), b) Ineqs. (2) and (5) are fulfilled (cf. Sec. 3.2), c)
cmax = cL but neither a) nor b) hold, d) cmax 6= cL.

corpus # sentences # spoken WER[%], loss:
subset (fraction) words sent. words

all 740 (100%) 12137 3.97 3.88
a) 401 (54%) 6189 1.16
b) 57 (8%) 990 3.64
c) 229 (31%) 4023 6.56
d) 53 (7%) 935 11.8 10.6

Nevertheless, it is interesting that this small improvement is
obtained only from those 7% of the utterances, for which word
error minimization gives a result different from sentence error
minimization. For this fraction of the test utterances a relative
improvement of about 7% in word error rate is obtained, cf.
condition d) in Table 1. It is also interesting to notice the in-
dividual error rates calculated for the different conditions pre-
sented in Table 1. Particularly utterances which have very high
posterior probability (> 1/2) also have a very low error rate.

The average sentence length here is nearly 18 words, and
the baseline word error rate for this task is 3.97%. From the
rough estimate presented at the end of Sec. 3.1, we would expect
a word error rate of more than 4% to see significant differences
in the decisions made by word and sentence error minimization.
Therefore, the marginal improvement obtained here using word
error minimization can be expected.

Finally, the average difference between the Levenshtein dis-
tance between the posterior maximizing word sequence and the
Bayes risk minimizing word sequence, and the parameter ε de-
rived in Eq.(12) is only 0.455, i.e. about one word in every sec-
ond sentence. Therefore ε can be used to find a close bound to
the difference between the Bayes risk for the posterior maximiz-
ing word sequence and the minimum Bayes risk and therefore
allows for finding a good initial over-estimate of the Bayes risk
via Ineq. (13). In addition, ε seems to be well suited in giv-
ing an efficiently calculable estimate of the potential change in
word error rate when doing word error minimization instead of
sentence error minimization.
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