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Abstract
This paper focuses on the interface between speech recognition
and machine translation in a speech translation system. Based
on a thorough theoretical framework, we exploit word lattices of
automatic speech recognition hypotheses as input to our trans-
lation system which is based on weighted finite-state transduc-
ers. We show that acoustic recognition scores of the recognized
words in the lattices positively and significantly affect the trans-
lation quality. In experiments, we have found consistent im-
provements on three different corpora in comparison with trans-
lations of single best recognized results. In addition we build
and evaluate a fully integrated speech translation model.

1. Introduction
It has been shown in the past that automatic speech recogni-
tion (ASR) and machine translation (MT) can be coupled in
order to directly translate spoken utterances into another lan-
guage. However, we find that previously presented work does
not cover the topic completely and partially comes to contradic-
tory or wrong conclusions.

Various approaches to speech translation have been pro-
posed and investigated by [1], [2], [3] and more recently [4]. [1]
presents an integrated speech translation system for tasks from
the Eutrans project. However, the experimental results were in-
consistent as integrated speech translation performed better than
the serial approach on data with an artificially generated bilin-
gual corpus, while it performed much worse on real-world data.
[2] only presents the theory of integrated speech translation,
but lacks experimental results. More recently, [4] concludes
that improvements from tighter coupling may only be observed
when lattices are sparse, i.e. there are only few hypothesized
words per spoken word in the lattice. This is inconsistent with
the theory of [2] and would mean that integrated speech trans-
lation would not work at all.

Following [2], Section 2 reviews the Bayes’ decision rule
for speech translation. Starting from there we show how to inte-
grate the translation and the acoustic model. For the translation
model we propose an alternative view on word alignment and
monotonization. Furthermore, we improve the training proce-
dure by taking advantage of the word alignment information
for reordering of the target sentences in the training corpus.
The translation model is then implemented efficiently using a
generic finite-state toolkit which supports on-demand computa-
tion [5]. In order to improve the translation quality, we directly
translate from ASR word lattices and consistently benefit from
acoustic scores. We thoroughly analyze the dependency of word
lattice density on the translation quality and show that lattices
with higher densities improve translation error measures. This
leads to the conclusion that fully integrated speech translation
should work and we prove this on the Eutrans II task.

2. Bayes’ Decision Rule for Speech
Translation

In speech translation, we are looking for a target language sen-
tenceeI

1 which is the translation of a speech utterance repre-
sented by acoustic vectorsxT

1 . In order to minimize the number
of sentence errors we maximize the posterior probability of the
target language translation given the speech signal (see [2]):
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Note that we made the natural assumption that the speech sig-
nal does not depend on the target sentence and approximated
the sum over all possible source language transcriptions by the
maximum. Pr(fJ

1 , eI
1) refers to the translation model while

Pr(xT
1 |fJ

1 ) may be a standard acoustic model. The translation
model is plugged in instead of the usual language model.

Following [6], we introduce analignmentbetween a source
and target sentence as hidden variableA:
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The hidden alignmentA represents all possible interpretations
of source words by target words.

In order to estimate a finite-state transducer model for trans-
lation, we aim at a representation that, by following a path from
the initial state of the transducer to one of its final states la-
beled with the source wordsfJ

1 , translates to a sequence of
target wordseI

1 of lengthI possibly different fromJ . There-
fore, we restrict the hidden alignmentA by allowing only align-
ments in which each target word is only connected to one
source word. The alignment can be represented as a function
a : {1, ..., I} → {1, ..., J}. Due to this alignment definition,
some positionsj may remain unaligned. We then additionally
modify the alignment function to bemonotonic, i. e. for each
pair of target positionsi < i′ we require thatai ≤ ai′ .

We use the GIZA++ toolkit [7] to automatically train word
alignment functions. For two languages with similar word order



these alignments are usually monotonic. In general, we apply
the GIATI monotonization technique described in [8] to force a
monotonic alignment. Using the monotonic alignment function
a we then define the segmentation ofeI

1 into target phrases̃ej

as follows (l ≥ 0):

ẽj = {ei, ei+1, ..., ei+l|ai = ai+1 = ... = ai+l = j}
The word sequencẽej is unique due to the alignment mono-
tonicity. For source positionsj with no alignment we set
ẽj = ε.

If we additionally assume that probabilities only depend on
the immediate predecessor words, we can compute thetransla-
tion modelPr(fJ

1 , eI
1|A) as:
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Thus, the translation model is a statisticalm-gram language
model on the level of bilingual (source word, target phrase)-
pairs (fj , ẽj) and well-known smoothing techniques may be
used for better generalization. An example of a transformed
corpus of bilingual tuples is given in Figure 1.

Presently, we do not explicitly model the alignment prob-
ability Pr(A). Instead we search for the alignment (i. e. for
a segmentation into sequencesẽj) which maximizes the trans-
lation model probability as given by Equation 1. Finally, we
arrive at the following search criterion:
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It should be emphasized here that the jointm-gram probability
p(fj , ẽj |f j−1

j−m, ẽj−1
j−m, a) contains dependencies on the prede-

cessor source wordsf j−1
j−m and therefore also serves as a source

language model.
The optimization criterion above suggests that we use word

lattices as input for speech translation. Each arc in the lattices
is scored with the conditional probability of the acoustic signal
given a source word hypothesis:
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wheretj−1 is the starting time andtj is the end time of the
hypothesized acoustic realization offj .

2.1. Reordering in Training and Translation

In order to eliminate the monotonization heuristics used in the
GIATI approach, we reorder the sentences in the target training
corpus based on the alignmenta such that the resulting align-
ment becomes monotonic. Obviously, resulting translations will
have the word order of the source sentence. For languages with
similar order this is not necessarily harmful. To fix the wrong
word order in general, we use a similar idea to that described in
[3]. Given a single best translation result we first permute the
words which results in a permutation automaton. The number
of possible permutations can be reduced to a reasonable amount
using IBM constraints together with a fixed window size. In ad-
dition, we define a probability distribution over the permutation
automaton that favors the original order. We build the result-
ing permutation automaton on-demand and compose it with an
n-gram target language model in order to select the word or-
der with the highest probability. Unless otherwise specified, we
will follow this novel approach in our experiments.

vorrei|i’d like del|some gelato|ice cream
per| ε favore|please

Figure 1: Example of a transformed sentence pair.

3. Experimental Results
3.1. Corpus Statistics

The speech translation experiments were carried out on three
different tasks. Experiments for all tasks were based on bilin-
gual sentence-aligned corpora. Corpus statistics for these tasks
are given in Table 1.

The Italian-English Basic Travel Expression Corpus
(BTEC) task contains tourism-related sentences usually found
in phrase books for tourists going abroad. We were kindly pro-
vided with this corpus by ITC-IRST. 16 reference translations
of the correct transcriptions of this corpus were available.

The Italian-English Eutrans II FUB task contains sentences
from the domain of hotel help-desk requests. It is significantly
smaller than the BTEC task and has evolved from one of the
first European-funded speech translation projects.

The third task is a Spanish-English and Spanish-Catalan
translation task. The available bilingual corpora were prepared
within the European LC-STAR project [9] and contain sponta-
neous utterances from travel and appointment scheduling do-
mains. These utterances are complete telephone dialogue turns
and significantly longer (about 23 words on average) than the
utterances in the BTEC corpus.

3.2. Model Scaling Factors

Since both the acoustic model probabilitiesp(x
t′j
tj
|fj) and the

joint translation probabilitiesp(fj , ẽj |f j−1
j−m, ẽj−1

j−m,a) are only
approximations of the true distributions, we add a scaling expo-
nentλ to the translation model. Except for the Eutrans II task,
we optimized the scaling factorλ on a development set, which
was similar in size to the corresponding test set.

3.3. Evaluation Criteria

For the automatic evaluation, we used word error rate (WER),
position-independent word error rate (PER), the BLEU and
NIST scores [10, 11]. The latter two measure accuracy, i. e.
larger scores are better. The error rates and scores were com-
puted with respect to multiple reference translations when avail-
able. To indicate this, we will label the error rate acronyms with
anm. On the BTEC Italian-English task both training and eval-
uation were performed using the corpus and references in low-
ercase. On all tasks both training and evaluation were carried
out without punctuation marks.

3.4. Generation of Word Lattices

The speech recognition systems used here produce word lattices
where arcs are labeled with start and end time, the recognized
entity (word, noise, hesitation, silence), the negative log proba-
bility of acoustic vectors between start and end time given the
entity and the negative log language model probability of the en-
tity. In a first step we mapped all recognition entities that are not
spoken words onto the empty arc labelε. As language model
probabilities and the time information are not used in our ap-
proach, we removed them from the lattices and compressed the
structure by applyingε-removal and determinization. As most
of the translation experiments were done without pruning, this
step significantly reduced runtime without changing the results.



Table 1: Corpus statistics of the speech translation tasks BTEC, Eutrans II and LC-STAR.
BTEC Eutrans II FUB LC-STAR

Italian English Italian English Spanish English Spanish Catalan
Train Sentences 66107 3257 39018 41885

Running Words 410275 427402 47681 57663 427014 456198 534215 544731
Vocabulary 15983 10971 2453 1695 10821 9303 11834 12163
Singletons 6386 3974 975 519 3661 3660 4216 4191

Test Sentences 253 300 519 519
Running Words 1459 1510 5305 6419 13365 14200 13365 13485

Out-Of-Vocabulary rate [%] 2.5 0.9 2.3 1.3 2.2 2.2 1.3 1.3
ASR WER [%] 21.4 - 23.7 - 31.9 - 31.9 -

Table 2: Translation results for the BTEC Italian-English task.
Input/ mWER mPER BLEU NIST
transcription: [%] [%] [%]
correct text 25.7 20.2 61.3 9.94
single best 33.2 28.4 53.1 8.91
word lattice 31.9 27.4 54.9 8.96
+ ac. scores 30.6 26.0 55.4 9.17

Table 3: Effect of target reordering in training and after transla-
tion for word lattice translation on the BTEC task.

Type of mWER mPER BLEU NIST
reordering: [%] [%] [%]
none 31.6 27.6 54.3 8.95
target 30.6 26.0 55.4 9.17

3.5. BTEC Italian-English Task

On the BTEC task, the best translation results were obtained by
estimating a smoothed4-gram language model on the level of
bilingual tuples(fj , ẽj). When translating, we performed full
search, even when using word lattices as input. We also used
a4-gram target language model to score and select constrained
reorderings of the produced translations.

The experimental results for the BTEC test corpus are given
in Table 2. When translating single best recognition results in-
stead of correctly transcribed ones, the quality of machine trans-
lation degrades by about 23 % relative in word error rate.

In the next experiment we compose the word lattice con-
taining multiple hypotheses of the recognized utterances with
the translation transducer. First, we do not use acoustic scores
of the labels in the input lattice, i. e. we only exploit the lattice
topology. We see that the error measures slightly improve.

Next, we use the acoustic scores of the word lattice together
with translation model scores in the global decision process. On
the BTEC task, the optimal translation model scaling factorλ
was found to be45. With this setting the translation quality was
significantly improved both on the development corpus and the
test corpus (in Table 2 the mWER drops from 33.2 to 30.6 %).

In a contrastive experiment, we kept the original word or-
der in the target training sentences and re-estimated the4-gram
translation model (using the GIATI technique). Table 3 shows
that the model without reordering performs significantly worse.
Also, without monotonization the optimal scaling factor for the
translation model scores was found to be even higher,λ = 55.

A possible explanation for the high translation model scal-
ing factors is the fact that in contrast to speech recognition the
decision concerning the target sentence does not rely as much
on the acoustics as it does for the source sentence. When we ap-
ply monotonization, the target language structure (e. g. word or-
der) gets closer to the structure of the source language, which in
turn results in a smaller optimal scaling factor and better trans-
lation quality.

3.6. FUB Italian-English Task

In contrast to the experiments on the BTEC task, only a limited
amount of training data was available for the FUB task. Since a
bigram translation model yielded the minimum word error rate
for written text input we used a bigram for all experiments on
the FUB task.

We had more control over the recognition experiments here
and therefore generated lattices with different densities. The
lattice error rate, i.e. the minimum word error rate among all
paths through the lattice, was as low as 9.1% for the largest
lattice density of 2098. We optimized the system with respect to
both the lattice density and the translation model scaling factor
λ simultaneously. Figure 2 shows the effect on the translation
word error rate. In contrast to the results presented in [4] the
word error rate consistently drops with larger lattices and shows
a clear minimum forλ = 90. Results of all error measures for
the optimal settings are given in Table 4.
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Figure 2: Effect of different lattice densities and translation
model scaling factorsλ on the translation word error rate (FUB
task). Lattices with density 24 were generated using tight beams
which resulted in a slightly worse recognition word error rate.

Additionally, we performed an experiment where speech
recognition and machine translation were directly coupled by
using a single finite-state network. Building the network fol-
lows the description of [12] where we substituted the language
model by the translation model. As the last line of Table 4
shows, the fully integrated system performs only slightly worse
than the system using large lattices which we account to a cou-
ple of search errors and the fact that we did not optimize the
search network on state-level due to technical problems. Note,
that although the speech recognition system has a slightly worse
word error rate on this task compared to [13] we obtain a much
better speech translation word error rate. The integrated system
also gets better compared to using only the single best recogni-
tion output.



Table 4: Translation results on the FUB Italian-English task.
The last line contains results when directly coupling the speech
recognition and machine translation systems by using a single
optimized finite-state network.

Input/ WER PER BLEU NIST
transcription: [%] [%] [%]
correct text 28.8 21.8 59.2 8.35
single best 37.0 28.7 51.8 7.36
word lattice 38.8 30.6 48.9 7.23
+ ac. scores 36.1 28.1 52.7 7.45
integrated 36.4 29.2 52.2 7.40

3.7. LC-STAR Spanish-English and Spanish-Catalan Tasks

On the LC-STAR task, the Spanish speech recognition system
had an accuracy of less than 70 % (see Table 1) due to lim-
ited training data, low sampling rate and large speaker variabil-
ity. When the highly erroneous single best recognition hypothe-
ses are translated into English, the word error rate climbs over
60 %, see Table 5. The translation quality can be improved
only slightly when we translate high-density word lattices with
acoustic scores. We attribute this to the undertrained transla-
tion model (the error rates are already rather high for the correct
Spanish input). This translation model can not discriminate well
between correct and erroneous hypotheses in the word lattice.
This is supported by the following observation. When we use
exactly the same Spanish word lattices and translate to Catalan,
we reach an improvement of over 12 % relative in word error
rate over the translation of the single best input (Table 5). Here,
the translation model is more robust, since the difference in
structure and word order between Spanish and Catalan is much
smaller than between Spanish and English. The optimal scaling
factorλ for the translation model scores was determined to be
60 on a development set in both of these experiments.

Table 5: Translation results for the LC-STAR Spanish-English
and Spanish-Catalan tasks. Lattices contain acoustic scores.

Input: WER PER BLEU NIST
[%] [%] [%]

Spanish correct text 44.2 32.5 37.2 8.00
to single best 60.6 45.5 25.9 6.22

English word lattice 59.8 45.2 25.6 6.30

Spanish correct text 12.2 10.5 80.1 12.03
to single best 39.8 32.3 47.6 8.56

Catalan word lattice 34.9 28.7 53.7 9.21

4. Conclusions
In this paper, we have used ASR word lattices as input for
a statistical translation system. Coupling of speech recogni-
tion and machine translation was implemented efficiently with
weighted finite-state transducers. By using word lattices with
acoustic model scores instead of single best recognition results
we were able to avoid the negative impact of recognition errors
and consistently improved translation quality on three differ-
ent tasks. We also proposed and implemented word reordering
for target sentences both in training and after translation and
further improved the translation results. In contrast to previ-
ously published work, for the first time we were able to gain
improvements even with large lattices and a non-serial, inte-
grated speech translation approach. In the future, we plan to
more extensively explore lexical reordering and test our system
on larger tasks.

5. Acknowledgement
This work was in part funded by the European Union under the
project LC-STAR, IST-2001-32216, and under the integrated
project TC-STAR – Technology and Corpora for Speech to
Speech Translation (IST-2002-FP6-506738).

6. References
[1] E. Vidal, “Finite-State Speech-to-Speech Translation”,

Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, pp. 111–114, Munich, Germany, 1997.

[2] H. Ney, “Speech Translation: Coupling of Recognition
and Translation”, Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, pp. 1149–1152, Phoenix,
AZ, 1999.

[3] S. Bangalore and G. Riccardi, “Finite-State Models for
Lexical Reordering in Spoken Language Translation”,
Proc. Int. Conf. on Spoken Language Processing, vol. 4,
pp. 422–425, Beijing, China, 2000.

[4] S. Saleem, S.-C. Jou, S. Vogel, and T. Schultz, “Us-
ing Word Lattice Information for a Tighter Coupling in
Speech Translation Systems”, Proc. Int. Conf. on Spo-
ken Language Processing, pp. 41–44, Jeju Island, Korea,
2004.

[5] S. Kanthak and H. Ney, “FSA: An Efficient and Flexible
C++ Toolkit for Finite State Automata using On-demand
Computation”, Proc. 42nd Annual Meeting of the ACL,
pp. 510 – 517, Barcelona, Spain, 2004.

[6] P. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.
Mercer, “The Mathematics of Statistical Machine Trans-
lation”, Computational Linguistics, vol. 19(2):263–311,
1993.

[7] F. J. Och and H. Ney, “A Systematic Comparison of Var-
ious Statistical Alignment Models”, Computational Lin-
guistics, vol. 29, number 1, pp. 19–51, 2003.

[8] F. Casacuberta and E. Vidal, “Machine Translation with
Inferred Stochastic Finite-State Transducers”, Computa-
tional Linguistics, vol. 30(2):205-225, 2004.

[9] V. Arranz, N. Castell, J. Giḿenez, “Development of
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