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Abstract

In this paper, we consider the use of multiple acoustic
features of the speech signal for continuous speech recognition.
A novel articulatory motivated acoustic feature is introduced,
namely the spectrum derivative feature. The new feature
is tested in combination with the standard Mel Frequency
Cepstral Coefficients (MFCC) and the voicedness features.
Linear Discriminant Analysis is applied to find the optimal
combination of different acoustic features. Experiments have
been performed on small and large vocabulary tasks. Significant
improvements in word error rate have been obtained by
combining the MFCC feature with the articulatory motivated
voicedness and spectrum derivative features: improvements of
up to 25% on the small-vocabulary task and improvements of
up to4% on the large-vocabulary task relative to using MFCC
alone with the same overall number of parameters in the system.

1. Introduction
Most automatic speech recognition systems use auditory
motivated representation of the speech signal, e.g. Mel
Frequency Cepstrum Coefficients (MFCC), Perceptual Linear
Prediction (PLP), and variations of these methods. There
have also been attempts at using articulatory information
in the acoustic front-end, e.g. an autocorrelation based
voicedness feature [1]. These experiments yielded significant
improvements in word error rate when combining standard
auditory motivated features with the articulatory ones. In this
paper, we describe and investigate a novel articulatory
motivated feature, namely the spectrum derivative feature.

Extraction and application of articulatory motivated
features have already been intensively studied in speech
recognition systems. The first related studies go back to
rule based speech recognition. On a digit string recognition
task, formant frequencies were first applied as acoustic
features by [2]. In [3], formant frequencies have been
used successfully in combination with the MFCC feature.
Significant improvements in word error rate (WER) have been
obtained on a connected-digit recognition task when using the
additional articulatory motivated features. Acoustic feature
derived from the group delay function have been researched in
different speech applications. In [4], significant improvements
have been reported when combining modified group delay
function based feature with MFCCs. In [1], liftered cepstral
coefficients have been concatenated with an autocorrelation
based voicedness measure. Using the concatenated features,
a large relative improvement in WER has been achieved by

applying discriminative training. A significant reduction in
WER has been presented using Linear Discriminant Analysis
(LDA) based feature combination in [5] when combining
MFCCs with a voicedness feature.

In this work, a novel acoustic feature is introduced.
The feature was first developed to distinguish obstruent from
sonant consonants. Sonants differ from obstruents by the
presence of formant structure. Thus a measure summarizing the
changes in the magnitude spectrum over the frequency axis can
contribute to differentiating the phoneme classes above. The
implementation is based on the derivatives of the magnitude
spectrum over the frequency axis. In every time frame, the
spectrum derivative feature is a vector of single measures
derived from the first, second, third, and higher order derivatives
of the magnitude spectrum.

We tested the spectrum derivative feature in combination
with different acoustic features by a Hidden Markov Model
(HMM) based recognition system. Experiments showed sig-
nificant improvements in word error rate when using additional
articulatory motivated features: relative improvements of up to
25% on the small-vocabulary task and relative improvements of
up to4% on the large-vocabulary task over the best optimized
MFCC based systems.

The rest of the paper is organized as follows. In Section 2,
details of the different feature extraction methods are described
including the spectrum derivative feature. In Section 3,
we review an LDA based feature combination algorithm.
Experiments are presented in Section 4, followed by a summary
in Section 5.

2. Signal Analysis
In this section, we present the feature extraction methods used
in our speech recognition system. First we describe the standard
Mel Frequency Cepstrum Coefficients (MFCC), followed by the
autocorrelation based voicedness feature. Finally, we present
the new spectrum derivative feature.

2.1. Baseline Feature Extraction

In this section, the standard MFCC signal analysis component
of our speech recognition system is described. First we perform
a preemphasis of the sampled speech signal. Every10ms, a
Hamming window is applied to pre-emphasized25ms speech
segments. We compute the short-term spectrum by Fast Fourier
Transform (FFT) along with an appropriate zero padding (e.g.
256 points in the case of8kHz sampling rate). Next, we
compute the outputs of overlapping Mel scale triangular filters,



the number of which depends on the sampling rate and varies
15 to 20 in our system. For each filter, the output is the sum of
the weighted spectral magnitudes. Logarithm is next applied to
the filter bank outputs, followed by Discrete Cosine Transform
which generates the cepstrum coefficients. The optimal number
of cepstrum coefficients varies from12 to 16 depending on the
number of filters in the filter bank.

Subsequently, a cepstral mean and variance normalization
is carried out in order to account for different audio channels.
We distinguish two types of normalization: sentence-wise
and session-wise. For sentence-wise recorded corpora,
normalization is performed on whole sentences. In addition,
the zeroth coefficient is shifted so that the maximum value
within every sentence is zero (energy normalization). Session-
wise recorded corpora consist of recordings containing several
sequentially spoken sentences. For these corpora, normalization
is carried out with a symmetric sliding window of2s without
energy normalization. In this way, a vector consisting of
normalized cepstrum coefficients is computed every10ms.

2.2. Voicedness Feature (V)

Voiced and unvoiced sounds form two complementary classes.
Thus, a feature explicitly expressing the voicedness of a time
frame can lead to better discrimination of phonemes and
consequently to better recognition results. Voicedness feature
is a measure representing the state of the vocal cords. The
measure describes how periodic the speech signal is in a given
time framet. We use the autocorrelation function to measure
periodicity. AutocorrelationRt(τ) expresses the similarity
between the time framext(ν) and its copy shifted byτ . We
have used the unbiased estimate of autocorrelationR̃t(t):

R̃t(τ) =
1

T − τ

T−τ−1X
ν=0

xt(ν) xt(ν + τ), (1)

where T is the length of a time frame. Autocorrelation of
periodic signals with frequencyf attains its maximumRt(0)
not only atτ = 0 but also atτ = k

f
k = 0,±1,±2, ... integer

multiples of the period. Therefore, a peak in the range of natural
pitches with a value close toRt(0) is a strong indication of
periodicity.

In order to produce a bounded measure of voicedness,
autocorrelation is divided bỹRt(0). The resulting function
has values mainly in the interval[−1..1] although because
of the unbiased estimate, any value is theoretically possible.
The voicedness measurevt is thus the maximum value of
the normalized autocorrelation in the interval of natural pitch
periods[2.5ms..12.5ms]:

vt =

max
2.5ms·fs≤τ≤12.5ms·fs

R̃t, (τ)

R̃t(0)
(2)

where fs denotes the sample rate. Values ofvt close to1
indicate voicedness. Values close to0 indicate voiceless time
frames. The autocorrelation function is determined every10ms
on speech segments of40ms in length. The segment length
is larger than for MFCCs to increase the possible number
of periods covered by a time frame. By applying (2) to
the autocorrelation, a one dimensional voicedness feature is
generated every10ms.

2.3. Spectrum Derivative Feature (SD)

The spectrum derivative feature was first introduced to
distinguish two articulatory classes: obstruent and sonant
consonants. From a phonetic point of view, these two classes
differ by the presence of formants. In the magnitude spectrum
of sonants, we can observe peaky formant-like structures.
However obstruents manifest in a flat and noisy magnitude
spectrum. Thus, a feature summarizing the intensity of changes
of the magnitude spectrum over the frequency axis can help to
differentiate these two phoneme classes.

In Section 2.3.1, we describe the extraction algorithm of
the spectrum derivative feature. In Section 2.3.2, we analyze
histograms of the feature estimated over different phoneme
classes.

2.3.1. Extraction Algorithm

The spectrum derivative feature is a vector of measures. The
measures are calculated as the absolute sum of different
order derivatives of the magnitude spectrum. The extraction
procedure is shown on Figure 1.
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Figure 1: Extraction of spectrum derivative feature

A Hamming window is applied to preemphasized speech
segments. The frame shift is chosen at10ms. The frame length
has been optimized empirically in a range from15ms to90ms.
The best results have been obtained by using25ms which is the
same frame length used when generating MFCC features.

Normalization of the magnitude spectrumXt[n] is
performed to account for different frame energies. Experiments
have been carried out by using frame-wise and utterance-
wise energy normalization. Best recognition results have been
obtained by normalizing the energy of every time frame:

X̃t[n] =
Xt[n]q

X2
t [0] + X2

t [N
2

] + 2
PN/2−1

n=1 X2
t [n]

, (3)

where t denotes the frame at timet, n denotes the discrete
frequency, andN is the number of FFT points. Thei-th order
derivativea

(i)
t [n] is calculated over the normalized magnitude

spectrumX̃[n]:

a
(i)
t [n] = a

(i−1)
t [n]− a

(i−1)
t [n− 1], (4)

a
(1)
t [n] = X̃t[n]− X̃t[n− 1], (5)

a
(i)
t [0] = 0. (6)

Finally, the spectrum derivative feature is a vector containing
measures. The measuresS

(i)
t are calculated as the logarithm of

the absolute sum of thei-th order derivative:

S
(i)
t = log

„XN/2

n=0
|a(i)

t [n]|
«

. (7)



We carried out experiments including different order
spectrum derivatives. The optimal number of spectrum
derivatives depends highly on the corpora (see Section 4).

2.3.2. Histograms of Spectrum Derivative Feature

To analyze the spectrum derivative feature, we have generated
histograms of the measure derived from the first order derivative
for different phoneme pairs. Figure 2. depicts distributions of
S

(1)
t on the phoneme pair /v/ and /s/, which, from the point of

view of phonetics, differ in their sonority. The histogram of
a given phoneme has been estimated on values aligned to the
central states of one of the triphones with the given phoneme
as a central phoneme. Although the overlap of the histograms
is rather large, the spectrum derivative feature can contribute to
the differentiation of these two phonemes.
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Figure 2: Histograms of the first order spectrum derivative
measure for the phonemes /v/ and /s/ estimated over
VerbMobil II corpus.

We have estimated histograms for another pair of phonemes
to verify if the spectrum derivative feature contains information
about voicedness of sounds. As Figure 3. shows, the spectrum
derivative feature can not distinguish voiced-unvoiced phoneme
pairs such as the alveolar fricatives /s/ and /z/.
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Figure 3: Histograms of the first order spectrum derivative
measure for the phonemes /z/ and /s/ estimated over
VerbMobil II corpus.

3. Feature Combination
We have used Linear Discriminant Analysis (LDA) to combine
the different acoustic features. In [6], LDA has been used
successfully to find an optimal linear combination of successive
vectors of a single feature stream. In the following steps,
we describe a straightforward way to use this method for
combining the different acoustic features. For all time framest,
the MFCC feature vectors are concatenated with the voicedness
and the spectrum derivative measures. In the second step,
11 successive concatenated vectors of the sliding windowt −
5, t− 4, ..., t, ..., t+4, t+5 are concatenated again for all time
framest which makes up the large input vector of LDA. Finally,
the combined feature vector is created by projecting the large
input vector onto a smaller subspace. The projection matrix
is determined by LDA such that it conveys the most relevant
classification information. The resulting acoustic vectors are
used as well in training and as in recognition.

The baseline experiments apply LDA in the same way. The
only difference is in the size of the LDA input vector and
thus in the number of columns of the projection matrix. The
resulting feature vector has the same size to ensure comparable
recognition results.

4. Experimental Results
Experiments have been performed on the small-vocabulary task
SieTill and on the large-vocabulary taskVerbMobil II.

4.1. Small-vocabulary Task

The small-vocabulary tests were performed on theSieTill
corpus. The corpus consists of German continuous digit strings
recorded over telephone line: approximately 43k spoken digits
in 13k sentences in both the training and the test set. The
number of female and male speakers is balanced.

The baseline recognition system for theSieTill corpus
is built with whole word HMMs using continuous emission
distributions. It can be characterized as follows:

• vocabulary of 11 German digits including ’zwo’;
• gender-dependent whole-word HMMs;
• 214 distinct states for each gender plus one for silence;
• Gaussian densities, global pooled diagonal covariance;
• sample rate is8kHz→ number of filter banks is 15;
• 30 acoustic features after applying LDA;
• max. likelihood training using Viterbi approximation.

The baseline system has a word error rate of 1.89% which
is the best reported so far using MFCC features and maximum
likelihood training . In Table 1., the experimental results are
summarized for using additional articulatory motivated features
and for their combinations. Experiments were performed with
single and with 32 Gaussian densities per mixture. A relative
improvements of up to20% has been obtained in both cases.

Table 1: Word error rates on theSieTill test corpus which
were obtained by combining MFCC with different articulatory
motivated features: voicedness measure (V) and the first order
spectrum derivative measure (SD1). #dns gives the average
number of densities per mixture.

#dns acoustic features error rates [%]
del ins WER

1 MFCC 0.50 0.71 3.83
MFCC + V 0.40 0.46 3.23
MFCC + SD1 0.35 0.73 3.50
MFCC + V + SD1 0.44 0.45 2.93

32 MFCC 0.54 0.30 1.89
MFCC + V 0.27 0.38 1.52
MFCC + SD1 0.26 0.52 1.73
MFCC + V + SD1 0.26 0.34 1.51

In Table 2., we present experimental results by using
different number of spectrum derivative measures. Note that,
when adding thei-th order spectrum derivative measure, we
keep on using all the lower order measures.

4.2. Large-vocabulary Task

The large-vocabulary tests were conducted on theVerbMobil II
corpus. The corpus consists of German large-vocabulary
conversational speech: 36k training-sentences (61.5h) from 857



Table 2: Word error rates on theSieTill test corpus which were
obtained by combining MFCC with voicedness measure (V)
and spectrum derivative measures (SD) of different order. #dns
gives the average number of densities per mixture. #SD denotes
the number of spectrum derivatives measures (e.g.3 means that
the experiment has included the first, second, and third order
spectrum derivative measures).

#dns acoustic feature #SD error rates [%]
del ins WER

1 MFCC + V 0.40 0.46 3.23
MFCC + V + SD 1 0.44 0.45 2.93

2 0.43 0.39 2.93
3 0.44 0.37 2.92
4 0.45 0.34 2.98
5 0.47 0.35 3.08

32 MFCC + V 0.27 0.38 1.52
MFCC + V + SD 1 0.26 0.34 1.51

2 0.26 0.37 1.60
3 0.24 0.33 1.45
4 0.25 0.34 1.51
5 0.24 0.35 1.53

speakers and 1k test-sentences (1.6h) from 16 speakers. The
baseline recognition system can be characterized as follows:

• recognition vocabulary of 10157 words;
• 3-state-HMM topology with skip;
• 3501 decision tree based across-word triphone states

including noise plus one state for silence;
• 385k gender independent Gaussian densities with global

pooled diagonal covariance;
• sample rate is16kHz→ number of filter banks is 20;
• 33 acoustic features after applying LDA;
• max. likelihood training using Viterbi approximation;
• class-trigram language model, test set perplexity: 62.0.

The baseline system has a word error rate of 21.6% which is
the best reported so far using MFCC features and across-word
acoustic modeling . In Table 3., the experimental results are
summarized for using different articulatory motivated features.
Relative improvements in word error rate of up to4% have
been achieved by using both additional features. The bootstrap
estimate of the probability of improvement is98.9%.

Table 3: Word error rates onVerbMobil II test corpus which
were obtained by combining MFCC with different articulatory
motivated measures: voicedness measure (V) and the first order
spectrum derivative measure (SD1).

acoustic features error rates [%]
del ins WER

MFCC 5.2 2.8 21.6
MFCC + V 4.8 2.8 21.2
MFCC + SD1 4.8 2.9 21.5
MFCC + V + SD1 4.6 2.8 20.8

The optimization of the number of spectrum derivative
measures has also been carried out on theVerbMobil II corpus.
As shown in Table 4., the optimal number differs from the one
obtained on theSieTill corpus. The inconsistent results show
that there are further investigations necessary on the role of the
higher order spectrum derivative measures.

Table 4: Word error rates on theVerbMobil II corpus which
were obtained by combining MFCC with voicedness measure
(V) and spectrum derivative measures (SD) of different order.
#SD denotes the number of spectrum derivatives measures (e.g.
3 means that the experiment has included the first, second, and
third order spectrum derivative measures).

acoustic features #SD error rates [%]
del ins WER

MFCC + V 4.8 2.8 21.2
MFCC + V + SD 1 4.6 2.8 20.8

2 4.4 3.0 21.4
3 5.1 2.8 21.3

5. Summary
In this paper, we have introduced a novel articulatory motivated
acoustic feature. The new spectrum derivative feature aims
to summarize the changes in the formant structure over
the frequency axis. Recognition results showed that the
spectrum derivative feature supplies mutually complementary
information compared to the MFCC and the voicedness
features. The best recognition results have been obtained
by combining the MFCC, the voicedness, and the spectrum
derivative features. Significant improvement in word error
rate has been obtained on both of the recognition tasks:
improvements of up to25% on the small-vocabulary taskSieTill
and improvements of up to4% on the large-vocabulary task
VerbMobil II relative to the optimized systems using the MFCC
feature alone.

In our future work, we will focus on better understanding
the spectrum derivative feature. Important issues to investigate
include the effect of spectrum smoothing and the role of the
higher order derivatives.
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