
OPTIMAL SUBSET SELECTION FROM TEXT DATABASES

Jilei Tian, Jani Nurminen and Imre Kiss

Multimedia Technologies Laboratory
Nokia Research Center, Tampere, Finland

{jilei.tian, jani.k.nurminen, imre.kiss}@nokia.com

ABSTRACT
Speech and language processing techniques, such as automatic
speech recognition (ASR), text-to-speech (TTS) synthesis,
language understanding and translation, will play a key role in
tomorrow’s user interfaces. Many of these techniques employ
models that must be trained using text data. In this paper, we
introduce a novel method for training set selection from text
databases. The quality of the training subset is ensured using
an objective function that effectively describes the coverage
achieved with the strings in the subset. The validity of the
subset selection technique is verified in an automatic
syllabification task. The results clearly indicate that the
proposed systematic selection approach maximizes the quality
of the training set, which in turn improves the quality of the
trained model. The presented idea can be used in a wide
variety of language processing applications that require
training with text databases.

1 INTRODUCTION
Most automatic speech recognition (ASR) and text-to-speech
(TTS) systems contain models that have to be trained with text
data. Typical examples can be found from many parts of the
systems. In pronunciation modeling, some data-driven
approach, such as neural network based methods or decision
tree based methods [6], are often applied, especially for
languages like English. These statistical models are trained
using a pronunciation dictionary containing grapheme-to-
phoneme entries. In text-based language identification [8], the
model is trained using a multilingual text corpus that consists
of word entries from the target languages. In the data-driven
syllabification task [7], the model is trained using text-based
pronunciations and the corresponding syllable structures.

In all data-driven approaches, the selection of a suitable
training set can be regarded as a very important step in the
training process. In general, the performance of any trained
model depends quite strongly on the quality of the text data
used in the training. With text-based data, the importance of
the training set selection is very pronounced since the
generation of the training data entries is often very time and
resource consuming and requires language-specific skills. In
this paper, we show that systematic training set selection
results in enhanced model performance and/or offers the
possibility to use a smaller training set size. In practice, the
reduced training set size brings two significant additional
benefits. First, the amount of manual annotation work is
reduced, which in turn decreases the probability of errors and
inconsistencies in the annotations. Second, the memory
consumption and the computational load caused by the

training process are lowered. In some cases this advantage
propagates to the trained model as well; the size of a decision
tree model, for example, depends on the size of the training
set.

Despite the evident importance of the training set
selection, this step is often neglected in practice. Usually, the
training set is obtained by collecting a set of random entries
from a larger text database or by decimating a sorted corpus.
The drawback of these solutions is that the amount of
meaningful information in the selected text data set is not
maximized. The random selection method is rather coarse and
does not produce consistent results. The method of decimating
a sorted data corpus, on the other hand, only uses a limited
number of the initial characters of the strings and thus does
not guarantee good performance.

In this paper, we present a method that can quasi-
optimally select a subset from a text database in such a
manner that the text coverage is maximized. To achieve this,
we define an objective function that is optimized in the subset
selection. The objective function measures the “subset
distance” using the generalized Levenshtein distances
between the text strings. This paper also introduces an
algorithm for optimizing the objective function. For practical
applications with large databases, the algorithm can be
modified in order to speed up the processing or to lower the
memory consumption, but the main idea and the objective
function will remain useful in all cases. To demonstrate the
usefulness of the proposed approach, we evaluate it in the
syllabification task.

The text subset selection method introduced in this paper
can be used in a wide variety of different applications. One
good example is the language identification task [8], in which
the proposed approach makes it possible to easily balance the
number of training set entries from each target language while
at the same time giving a good coverage for every target
language. In addition to the training set selection task
discussed extensively in this paper, it is possible to employ
the same techniques for clustering a text database. Moreover,
when used together with a meaningful distance measure, such
as the generalized Levenshtein distance, the proposed
approach enables the use of vector quantization techniques on
text data.

The remainder of the paper is organized as follows. We
first describe the generalized Levenshtein distance and
introduce the basic principles of the text database selection
algorithm in Section 2. In Section 3, we describe the
syllabification task used as the practical example by briefly
reviewing the syllable structure grammar and the neural
network based syllabification method. The performance of the
proposed subset selection approach is evaluated in the

syllabification task in Section 4. Finally, some concluding
remarks are presented in Section 5.

2 SELECTION ALGORITHM
In order to be able to select a subset from a text database in a
systematic and meaningful manner, an objective function
measuring the quality of the subset must be defined. The
objective function should somehow measure the similarity or
the dissimilarity of the entries. In the proposed approach, we
base the objective function on the generalized Levenshtein
distance. In this section, we first describe the basic properties
of this distance measure and then continue by defining an
objective function measuring the average distance within a
subset and by introducing an algorithm for selecting subsets of
different sizes in a quasi-optimal manner.

2.1 Generalized Levenshtein distance

The generalized Levenshtein distance (GLD) is defined as the
minimum cost of transforming one string into another by
means of a sequence of basic transformations: insertion,
deletion and substitution [4]. The transformation cost is
determined by the costs assigned to each basic transformation.

Let x and y be strings of length m and n, respectively,
whose symbols belong to a finite alphabet of size s. Let xi be
the ith symbol of string x, with 1 ≤ i ≤ m, and x(i) be the prefix
of the string x of length i, i.e. the substring containing the first
i symbols of x. In addition, let d(i,j) be the distance between
x(i) and y(j), and ε be an empty string. Furthermore, we
denote by w(a,b), w(a,ε) and w(ε,b) the cost of substituting the
symbol a with the symbol b, the cost of deleting a and the
cost of inserting b, respectively. The distance d(m,n) is
recursively computed based on the definitions of d(0,0), d(i,0)
and d(0,j) (i = 1…m, j = 1…n), representing the initial
distance, the cost of deleting the prefix x(i) and the cost of
inserting the prefix y(j), respectively, as follows:

njywjdjd
mixwidid

d

j

i

...,1),()1,0(),0(
...,1),()0,1()0,(

0)0,0(

=∀+−=
=∀+−=

=

ε
ε (1)









+−−

+−
+−

=

),()1,1(
),()1,(
),(),1(

min),(

ji

j

i

yxwjid
ywjid

xwjid
jid ε

ε
 (2)

The original Levenshtein distance is characterized by the
following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is
equal to b and 1 otherwise. Its generalized version assumes
that different costs can be associated to transformations
involving different symbols. In the case of an alphabet of s
symbols, this requires a table of size (s+1) times (s+1), called
the cost table, to store all the substitution, insertion and
deletion costs. It can be shown that the defined distance is a
metric if the cost table is symmetric.

2.2 Objective function and selection algorithm

In our approach, we measure the quality of a text subset using
an objective function based on the generalized Levenshtein
distance. As described in Section 2.1, the Levenshtein distance
can be used for measuring the distance between any pair of
entries. Similarly, the distance for the whole text data set can
be calculated by averaging the distances of all the string pairs

in the set. Suppose that there are m entries in the database and
the ith entry is denoted by e(i). With these definitions, we can
compute the overall “subset distance” D as:

)1(

))(),((2
1

−⋅

⋅
=

∑∑
= >

mm

jeield
D

m

i

m

ij , (3)

where ld(e(i), e(j)) is the GLD between the ith and jth entries.
Based on the above objective function, it is possible to

design an algorithm that selects a subset from a text database
in such a manner that the distance D is maximized. The
following algorithm recursively constructs the subset by
always selecting the new entry that maximizes the distance to
the other selected entries.
1. Calculate the Levenshtein distances for all the pairs;

ld(e(i), e(j));
2. Initially select the pair that has the largest distance among

all pairs in the database,
 { }))(),(())2(_),1(_((argmax

),1(

jeieldesubsetesubset
ijmi >≤≤

= . (4)

3. Assuming that the selected subset has k entries (in the
first time k = 2), the target now is to find the k+1-th entry
to the subset. The selection that approximately maximizes
the amount of new information brought into the subset
can be done using the following formula.









= ∑
≠=≤≤

k

jesubsetiejmi

jesubsetieldp
)(_)(,1)1(

)(_),((argmax . (5)

The selected entry p is added into the subset as
subset_e(k+1).

4. Repeat step 3 until the preset subset size is reached.

3 EXAMPLE APPLICATION:
SYLLABIFICATION TASK

The development of speech synthesizers and speech
recognizers often requires working with sub-word units such
as syllables [5]. We have earlier described a neural network
based approach for the automatic assignment of syllable
boundaries in [7]. In this paper, we revisit the topic and use
this syllabification task for verifying the usefulness of the
proposed subset selection approach. The first part of this
section gives some basic information on the task and the
second part discusses the neural network approach. The
practical results achieved in this task are presented in
Section 4.

3.1 Syllable structure

A syllable is a basic unit of word studied on both the phonetic
and phonological levels of analysis [2]. The syllable
information can be described using grammars [3]. The
simplest grammar is the phoneme grammar, where a syllable is
tagged with the corresponding phoneme sequence. The
consonant-vowel grammar describes a syllable as a consonant-
vowel-consonant (CVC) sequence. The syllable structure
grammar, on the other hand, divides a syllable into onset,
nucleus and coda (ONC) as shown in Figure 1. The nucleus is
an obligatory part that can be either a vowel or a diphthong.
The onset is the first part of a syllable consisting of consonants
and ending at the nucleus of the syllable, e.g. in the syllable
[t eh k s t], /t/ is the onset and the vowel part /eh/ is the
nucleus. The part of a syllable that follows the nucleus forms
the coda. The coda is constructed of consonants, e.g. /k s t/ in

our example syllable. The nucleus and coda are combined to
form the rhyme of a syllable. A syllable has a rhyme, even if it
doesn't have a coda.

In the syllable structure grammar, the consonants are
assigned as onset or coda. The ONC representation used in the
syllable structure grammar contains more information than the
CVC structure for multi-syllable words. The syllable structure
grammar was used in [7] and it is also used in this paper.

In the automatic syllabification task, the phoneme
sequences are mapped into their ONC representations. The
data-driven syllabification model is trained on the mapping
information. In the decoding phase, given a phoneme
sequence, the ONC sequence is first generated, and then the
syllable boundaries are uniquely decided on the ONC
sequence. For invalid ONC sequences, a self-correction
algorithm [7] can be applied to solve the problem by utilizing
certain common linguistic rules. The whole syllabification task
can be summarized as follows:
1. Each pronunciation phoneme string in the training set is

mapped into the corresponding ONC string, for example:
(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C
2. The model is trained on the data in the format of

“pronunciation -> ONC”
3. Given a pronunciation string, the corresponding ONC
sequence is generated using the model. Then, the syllable
boundaries are placed at the location starting with symbol “O”,
or with “N” if it is not preceded with symbol “O”.

Figure 1. Diagram of the syllable structure grammar.

3.2 Neural network based syllabification approach

The basic neural network based ONC model presented in [7] is
a standard multi-layer perceptron (MLP) shown in Figure 2.
The input phonemes are presented to the MLP network in a
sequential manner. The network gives estimates of ONC
posterior probabilities for each presented phoneme. In order to
take the phoneme context into account, a number of phonemes
on each side of the phoneme in question are also used as inputs
to the network. Thus, a window of phonemes is presented to
the neural network as input. Figure 2 shows a typical MLP
with a context size of w phonemes, phi-w…phi+w centered at
phoneme phi. The centermost phoneme phi is the phoneme that
corresponds to the output of the network. Therefore, the output
of the MLP is the estimated ONC probability
P(onck|phi−w,…,phi+w) ({ }CNOonck ,,∈) for the centermost
phoneme phi in the given context pi-w…pi+w. A phonemic null
is defined in the phoneme set and is used for representing

phonemes to the left of the first phoneme and to the right of
the last phoneme in a pronunciation.

The ONC neural network is a fully connected MLP,
which uses a hyperbolic tangent sigmoid shaped function in
the hidden layer and a softmax normalization function in the
output layer. The softmax normalization ensures that the
network outputs are in the range [0,1] and sum up to unity,

∑

=

= 3

1j

y

y

i
j

i

e

eP . (6)

In Equation (6), yi and Pi denote the ith output value
before and after softmax normalization. It has been shown in
[1] that a neural network with softmax normalization will
approximate class posterior probabilities when trained for
one-out-of-N classification and when the network is
sufficiently complex and trained to a global minimum. Since
the neural network input units are text-valued, the phonemes
in the input window need to be transformed to some numeric
quantity. This can be done, for example, using an orthogonal
codebook representing the alphabet used for the ONC
mapping task, as shown in Table 1. The last row in the table is
the code for the phonemic null. An important property of the
orthogonal coding scheme is that it does not introduce any
correlation between the different letters.

o u t p u t l a y e r

h i d d e n l a y e r

i n p u t l a y e r

P (o n c 1 | p h i - w , . . . , p h i+ w) P (o n c 3 | p h i - w , . . . , p h i+ w)

c o d e v e c t o r s o f i n p u t l e t t e r s

p h i - w p h i p h i+ w

Figure 2. Two-layer neural network architecture.

The ONC neural network is trained using the standard
back-propagation (BP) algorithm augmented by a momentum
term. Each phoneme with context and the corresponding ONC
tag of the pronunciation make up one training example.
Weights are updated in a stochastic on-line fashion. All
parameters are rounded off to eight bits as this was found
sufficient for representing model parameters.

Table 1. Orthogonal phoneme coding scheme.

Letter Code
aa 100...0000
ae 010...0000
... ...
B 000...1000
P 000...0100
T 000...0010
000...0001

The outputs of the ONC neural network approximate the

ONC posterior probabilities corresponding to the centermost
phoneme. The ONC sequence of a pronunciation is obtained
by combining the network outputs for each individual
phoneme in the pronunciation. Given a pronunciation with its

 [Syllable]

Nucleus Onset Coda

 /t/ /eh/ /k/ /s/ /t/

Word:
text

phonemic representation, the ONC tag of phoneme phi is
given by
 { }),...,|(argmax wiwik

onc
phphoncPonc

k

+−= , (7)

where),...,|(wiwik phphoncP +− is the network output
corresponding to onck given the input phonemes phi-w…phi+w,
and variable w denotes the phoneme window context size,
respectively. The variable onc takes its values from the set
[O N C].

4 EXPERIMENTAL RESULTS
The neural network based syllabification method is evaluated
using the CMU dictionary for US English. The dictionary
contains 10,801 words with their pronunciations and labels
with ONC information. The pronunciations and the mapped
ONC sequences are extracted to form the training data. The
training set is selected from the whole database by using the
following methods:
• Decimation of the sorted dictionary (denoted as

DECIMATE);
• Subset selection from the text database using the selection

approach proposed in this paper (denoted as SELECT).
With both methods, the data not selected to the training set
constitutes the test set.

100 150 200 250 300 350 400 450 500 550
88

90

92

94

96

98

100

SELECT

DECIMATE

Performance comparison between two data selection methods

Size of training set

Ac
cu

rac
y o

f te
st

se
t

Figure 3. ONC accuracy on test set with different training set
sizes using the two data selection methods.

Figure 3 shows the experimental results achieved using
the two data selection methods. The efficiency of the training
set selection approach can be studied by evaluating the
generalization capability. The general rule of thumb is that the
more training data is available, the better performance can be
expected. However, the selection of the training data affects
the generalization capability: if the training data is well
selected, the performance can be improved without increasing
the size of the training set. The results clearly show that the
proposed subset selection technique outperforms the
commonly used decimation method; the average improvement
achieved using the proposed approach is 38.8%.

Figure 4 illustrates the “subset distance” (see Section 2.2)
of datasets extracted using the two different data selection
methods: the decimation technique and the proposed selection
algorithm. It is easy to see that the average distance D is more
or less even when the decimation method is used. With the
proposed method, the average distance decreases
monotonically with increasing data size. Furthermore, the
difference between the two methods is large with small subset
sizes, and converges to zero when the whole data set is used.
Thus, these results indicate that the proposed method can

extract data more efficiently, i.e. the selected data has better
coverage. Naturally, this explains the better generalization
capability of the trained model.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
6.5

7

7.5

8

8.5

9

9.5

10
Average distance of data extracted by two data selection methods

Percentage of selected sebset size vs. whole dataset size

Av
er

ag
e

dis
ta

nc
e

of
 su

bs
et

SELECT

DECIMATE

Figure 4. Average distance D inside the subsets extracted
using the two different data selection methods, with respect to
the percentage of the subset size vs. the whole data size.

5 CONCLUSIONS
Training data selection from a text database is a crucial, but
often neglected, step in the development of ASR and TTS
systems. In this paper, we define an objective function that
effectively measures the quality of a selected subset.
Moreover, we introduce a subset selection algorithm that
optimizes the objective function. Our experimental results
obtained in the syllabification task show that the proposed
approach is a very promising technique that makes it possible
to select subsets with good coverage in a systematic and
meaningful way. The presented idea can be used in many
different applications that require training with a text database.

6 REFERENCES
[1] C. Bishop, Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.
[2] D. Kahn, Syllable-Based Generalizations in English

Phonology, Doctoral Dissertation, Massachusetts Institute
of Technology, USA, 1976.

[3] K. Müller, “Automatic Detection of Syllable Boundaries
Combining the Advantages of Treebank and Bracketed
Corpora Training”, in Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics,
Toulouse, France, 2001.

[4] E. Ristad and P. Yianilos, “Learning String Edit
Distance”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol.20, pp.522-532, May, 1998.

[5] R. Sproat, Multilingual Text-to-Speech Synthesis: The
Bell Labs Approach. Kluwer, Dordrecht, 1998.

[6] J. Suontausta, and J. Häkkinen, ”Decision Tree Based
Text-to-Phoneme Mapping for Speech Recognition,” In
Proceedings of 6th ICSLP, Beijing, China, 2000.

[7] J. Tian, “Data-Driven Approaches for Automatic
Detection of Syllable Boundaries”, in Proceedings of 8th
ICSLP, Jeju Islands, Korea, 2004.

[8] J. Tian, J. Häkkinen, S. Riis, and K. Jensen, “On Text-
Based Language Identification for Multilingual Speech
Recognition Systems, In Proceedings of 7th ICSLP,
Denver, USA, 2002.

