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ABSTRACT 
Speech and language processing techniques, such as automatic 
speech recognition (ASR), text-to-speech (TTS) synthesis, 
language understanding and translation, will play a key role in 
tomorrow’s user interfaces. Many of these techniques employ 
models that must be trained using text data. In this paper, we 
introduce a novel method for training set selection from text 
databases. The quality of the training subset is ensured using 
an objective function that effectively describes the coverage 
achieved with the strings in the subset. The validity of the 
subset selection technique is verified in an automatic 
syllabification task. The results clearly indicate that the 
proposed systematic selection approach maximizes the quality 
of the training set, which in turn improves the quality of the 
trained model. The presented idea can be used in a wide 
variety of language processing applications that require 
training with text databases. 

1 INTRODUCTION 
Most automatic speech recognition (ASR) and text-to-speech 
(TTS) systems contain models that have to be trained with text 
data. Typical examples can be found from many parts of the 
systems. In pronunciation modeling, some data-driven 
approach, such as neural network based methods or decision 
tree based methods [6], are often applied, especially for 
languages like English. These statistical models are trained 
using a pronunciation dictionary containing grapheme-to-
phoneme entries. In text-based language identification [8], the 
model is trained using a multilingual text corpus that consists 
of word entries from the target languages. In the data-driven 
syllabification task [7], the model is trained using text-based 
pronunciations and the corresponding syllable structures.  

In all data-driven approaches, the selection of a suitable 
training set can be regarded as a very important step in the 
training process. In general, the performance of any trained 
model depends quite strongly on the quality of the text data 
used in the training. With text-based data, the importance of 
the training set selection is very pronounced since the 
generation of the training data entries is often very time and 
resource consuming and requires language-specific skills. In 
this paper, we show that systematic training set selection 
results in enhanced model performance and/or offers the 
possibility to use a smaller training set size. In practice, the 
reduced training set size brings two significant additional 
benefits. First, the amount of manual annotation work is 
reduced, which in turn decreases the probability of errors and 
inconsistencies in the annotations. Second, the memory 
consumption and the computational load caused by the 

training process are lowered. In some cases this advantage 
propagates to the trained model as well; the size of a decision 
tree model, for example, depends on the size of the training 
set.  

Despite the evident importance of the training set 
selection, this step is often neglected in practice. Usually, the 
training set is obtained by collecting a set of random entries 
from a larger text database or by decimating a sorted corpus. 
The drawback of these solutions is that the amount of 
meaningful information in the selected text data set is not 
maximized. The random selection method is rather coarse and 
does not produce consistent results. The method of decimating 
a sorted data corpus, on the other hand, only uses a limited 
number of the initial characters of the strings and thus does 
not guarantee good performance. 

In this paper, we present a method that can quasi-
optimally select a subset from a text database in such a 
manner that the text coverage is maximized. To achieve this, 
we define an objective function that is optimized in the subset 
selection. The objective function measures the “subset 
distance” using the generalized Levenshtein distances 
between the text strings. This paper also introduces an 
algorithm for optimizing the objective function. For practical 
applications with large databases, the algorithm can be 
modified in order to speed up the processing or to lower the 
memory consumption, but the main idea and the objective 
function will remain useful in all cases. To demonstrate the 
usefulness of the proposed approach, we evaluate it in the 
syllabification task. 

The text subset selection method introduced in this paper 
can be used in a wide variety of different applications. One 
good example is the language identification task [8], in which 
the proposed approach makes it possible to easily balance the 
number of training set entries from each target language while 
at the same time giving a good coverage for every target 
language. In addition to the training set selection task 
discussed extensively in this paper, it is possible to employ 
the same techniques for clustering a text database. Moreover, 
when used together with a meaningful distance measure, such 
as the generalized Levenshtein distance, the proposed 
approach enables the use of vector quantization techniques on 
text data. 

The remainder of the paper is organized as follows. We 
first describe the generalized Levenshtein distance and 
introduce the basic principles of the text database selection 
algorithm in Section 2. In Section 3, we describe the 
syllabification task used as the practical example by briefly 
reviewing the syllable structure grammar and the neural 
network based syllabification method. The performance of the 
proposed subset selection approach is evaluated in the 



syllabification task in Section 4. Finally, some concluding 
remarks are presented in Section 5. 

2 SELECTION ALGORITHM 
In order to be able to select a subset from a text database in a 
systematic and meaningful manner, an objective function 
measuring the quality of the subset must be defined. The 
objective function should somehow measure the similarity or 
the dissimilarity of the entries. In the proposed approach, we 
base the objective function on the generalized Levenshtein 
distance. In this section, we first describe the basic properties 
of this distance measure and then continue by defining an 
objective function measuring the average distance within a 
subset and by introducing an algorithm for selecting subsets of 
different sizes in a quasi-optimal manner. 

2.1 Generalized Levenshtein distance 

The generalized Levenshtein distance (GLD) is defined as the 
minimum cost of transforming one string into another by 
means of a sequence of basic transformations: insertion, 
deletion and substitution [4]. The transformation cost is 
determined by the costs assigned to each basic transformation. 

Let x and y be strings of length m and n, respectively, 
whose symbols belong to a finite alphabet of size s. Let xi be 
the ith symbol of string x, with 1 ≤ i ≤ m, and x(i) be the prefix 
of the string x of length i, i.e. the substring containing the first 
i symbols of x. In addition, let d(i,j) be the distance between 
x(i) and y(j), and ε be an empty string. Furthermore, we 
denote by w(a,b), w(a,ε) and w(ε,b) the cost of substituting the 
symbol a with the symbol b, the cost of deleting a and the 
cost of inserting b, respectively. The distance d(m,n) is 
recursively computed based on the definitions of d(0,0), d(i,0) 
and d(0,j) (i = 1…m, j = 1…n), representing the initial 
distance, the cost of deleting the prefix x(i) and the cost of 
inserting the prefix y(j), respectively, as follows: 
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The original Levenshtein distance is characterized by the 
following costs: w(a, ε) = 1, w(ε,b) = 1, and w(a, b) is 0 if a is 
equal to b and 1 otherwise. Its generalized version assumes 
that different costs can be associated to transformations 
involving different symbols. In the case of an alphabet of s 
symbols, this requires a table of size (s+1) times (s+1), called 
the cost table, to store all the substitution, insertion and 
deletion costs. It can be shown that the defined distance is a 
metric if the cost table is symmetric. 

2.2 Objective function and selection algorithm 

In our approach, we measure the quality of a text subset using 
an objective function based on the generalized Levenshtein 
distance. As described in Section 2.1, the Levenshtein distance 
can be used for measuring the distance between any pair of 
entries. Similarly, the distance for the whole text data set can 
be calculated by averaging the distances of all the string pairs 

in the set. Suppose that there are m entries in the database and 
the ith entry is denoted by e(i). With these definitions, we can 
compute the overall “subset distance” D as: 
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where ld(e(i), e(j)) is the GLD between the ith and jth entries. 
Based on the above objective function, it is possible to 

design an algorithm that selects a subset from a text database 
in such a manner that the distance D is maximized. The 
following algorithm recursively constructs the subset by 
always selecting the new entry that maximizes the distance to 
the other selected entries. 
1. Calculate the Levenshtein distances for all the pairs; 

ld(e(i), e(j)); 
2. Initially select the pair that has the largest distance among 

all pairs in the database, 
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3. Assuming that the selected subset has k entries (in the 
first time k = 2), the target now is to find the k+1-th entry 
to the subset. The selection that approximately maximizes 
the amount of new information brought into the subset 
can be done using the following formula.  
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The selected entry p is added into the subset as 
subset_e(k+1). 

4. Repeat step 3 until the preset subset size is reached. 

3 EXAMPLE APPLICATION: 
SYLLABIFICATION TASK 

The development of speech synthesizers and speech 
recognizers often requires working with sub-word units such 
as syllables [5]. We have earlier described a neural network 
based approach for the automatic assignment of syllable 
boundaries in [7]. In this paper, we revisit the topic and use 
this syllabification task for verifying the usefulness of the 
proposed subset selection approach. The first part of this 
section gives some basic information on the task and the 
second part discusses the neural network approach. The 
practical results achieved in this task are presented in 
Section 4. 

3.1 Syllable structure 

A syllable is a basic unit of word studied on both the phonetic 
and phonological levels of analysis [2]. The syllable 
information can be described using grammars [3]. The 
simplest grammar is the phoneme grammar, where a syllable is 
tagged with the corresponding phoneme sequence. The 
consonant-vowel grammar describes a syllable as a consonant-
vowel-consonant (CVC) sequence. The syllable structure 
grammar, on the other hand, divides a syllable into onset, 
nucleus and coda (ONC) as shown in Figure 1. The nucleus is 
an obligatory part that can be either a vowel or a diphthong. 
The onset is the first part of a syllable consisting of consonants 
and ending at the nucleus of the syllable, e.g. in the syllable 
[t eh k s t], /t/ is the onset and the vowel part /eh/ is the 
nucleus. The part of a syllable that follows the nucleus forms 
the coda. The coda is constructed of consonants, e.g. /k s t/ in 



our example syllable. The nucleus and coda are combined to 
form the rhyme of a syllable. A syllable has a rhyme, even if it 
doesn't have a coda. 

In the syllable structure grammar, the consonants are 
assigned as onset or coda. The ONC representation used in the 
syllable structure grammar contains more information than the 
CVC structure for multi-syllable words. The syllable structure 
grammar was used in [7] and it is also used in this paper. 

In the automatic syllabification task, the phoneme 
sequences are mapped into their ONC representations. The 
data-driven syllabification model is trained on the mapping 
information. In the decoding phase, given a phoneme 
sequence, the ONC sequence is first generated, and then the 
syllable boundaries are uniquely decided on the ONC 
sequence. For invalid ONC sequences, a self-correction 
algorithm [7] can be applied to solve the problem by utilizing 
certain common linguistic rules. The whole syllabification task 
can be summarized as follows: 
1. Each pronunciation phoneme string in the training set is 

mapped into the corresponding ONC string, for example: 
(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C 
2. The model is trained on the data in the format of 

“pronunciation -> ONC” 
3. Given a pronunciation string, the corresponding ONC 
sequence is generated using the model. Then, the syllable 
boundaries are placed at the location starting with symbol “O”, 
or with “N” if it is not preceded with symbol “O”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Diagram of the syllable structure grammar. 

3.2 Neural network based syllabification approach 

The basic neural network based ONC model presented in [7] is 
a standard multi-layer perceptron (MLP) shown in Figure 2. 
The input phonemes are presented to the MLP network in a 
sequential manner. The network gives estimates of ONC 
posterior probabilities for each presented phoneme. In order to 
take the phoneme context into account, a number of phonemes 
on each side of the phoneme in question are also used as inputs 
to the network. Thus, a window of phonemes is presented to 
the neural network as input. Figure 2 shows a typical MLP 
with a context size of w phonemes, phi-w…phi+w centered at 
phoneme phi. The centermost phoneme phi is the phoneme that 
corresponds to the output of the network. Therefore, the output 
of the MLP is the estimated ONC probability 
P(onck|phi−w,…,phi+w) ( { }CNOonck ,,∈ ) for the centermost 
phoneme phi in the given context pi-w…pi+w. A phonemic null 
is defined in the phoneme set and is used for representing 

phonemes to the left of the first phoneme and to the right of 
the last phoneme in a pronunciation. 

The ONC neural network is a fully connected MLP, 
which uses a hyperbolic tangent sigmoid shaped function in 
the hidden layer and a softmax normalization function in the 
output layer. The softmax normalization ensures that the 
network outputs are in the range [0,1] and sum up to unity, 
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In Equation (6), yi and Pi denote the ith output value 
before and after softmax normalization. It has been shown in 
[1] that a neural network with softmax normalization will 
approximate class posterior probabilities when trained for 
one-out-of-N classification and when the network is 
sufficiently complex and trained to a global minimum. Since 
the neural network input units are text-valued, the phonemes 
in the input window need to be transformed to some numeric 
quantity. This can be done, for example, using an orthogonal 
codebook representing the alphabet used for the ONC 
mapping task, as shown in Table 1. The last row in the table is 
the code for the phonemic null. An important property of the 
orthogonal coding scheme is that it does not introduce any 
correlation between the different letters. 
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Figure 2. Two-layer neural network architecture. 

The ONC neural network is trained using the standard 
back-propagation (BP) algorithm augmented by a momentum 
term. Each phoneme with context and the corresponding ONC 
tag of the pronunciation make up one training example. 
Weights are updated in a stochastic on-line fashion. All 
parameters are rounded off to eight bits as this was found 
sufficient for representing model parameters. 

Table 1. Orthogonal phoneme coding scheme. 

Letter Code 
aa 100...0000 
ae 010...0000 
... ... 
B 000...1000 
P 000...0100 
T 000...0010 
# 000...0001 

 
The outputs of the ONC neural network approximate the 

ONC posterior probabilities corresponding to the centermost 
phoneme. The ONC sequence of a pronunciation is obtained 
by combining the network outputs for each individual 
phoneme in the pronunciation. Given a pronunciation with its 

   [Syllable] 

Nucleus Onset Coda 

   /t/   /eh/ /k/   /s/    /t/ 

Word: 
text  



phonemic representation, the ONC tag of phoneme phi is 
given by 
 { }),...,|(argmax wiwik

onc
phphoncPonc

k
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where ),...,|( wiwik phphoncP +−  is the network output 
corresponding to onck given the input phonemes phi-w…phi+w, 
and variable w denotes the phoneme window context size, 
respectively. The variable onc takes its values from the set 
[O N C]. 

4 EXPERIMENTAL RESULTS 
The neural network based syllabification method is evaluated 
using the CMU dictionary for US English. The dictionary 
contains 10,801 words with their pronunciations and labels 
with ONC information. The pronunciations and the mapped 
ONC sequences are extracted to form the training data. The 
training set is selected from the whole database by using the 
following methods: 
• Decimation of the sorted dictionary (denoted as 

DECIMATE); 
• Subset selection from the text database using the selection 

approach proposed in this paper (denoted as SELECT). 
With both methods, the data not selected to the training set 
constitutes the test set. 
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Figure 3. ONC accuracy on test set with different training set 
sizes using the two data selection methods. 

Figure 3 shows the experimental results achieved using 
the two data selection methods. The efficiency of the training 
set selection approach can be studied by evaluating the 
generalization capability. The general rule of thumb is that the 
more training data is available, the better performance can be 
expected. However, the selection of the training data affects 
the generalization capability: if the training data is well 
selected, the performance can be improved without increasing 
the size of the training set. The results clearly show that the 
proposed subset selection technique outperforms the 
commonly used decimation method; the average improvement 
achieved using the proposed approach is 38.8%. 

Figure 4 illustrates the “subset distance” (see Section 2.2) 
of datasets extracted using the two different data selection 
methods: the decimation technique and the proposed selection 
algorithm. It is easy to see that the average distance D is more 
or less even when the decimation method is used. With the 
proposed method, the average distance decreases 
monotonically with increasing data size. Furthermore, the 
difference between the two methods is large with small subset 
sizes, and converges to zero when the whole data set is used. 
Thus, these results indicate that the proposed method can 

extract data more efficiently, i.e. the selected data has better 
coverage. Naturally, this explains the better generalization 
capability of the trained model. 
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Figure 4. Average distance D inside the subsets extracted 
using the two different data selection methods, with respect to 
the percentage of the subset size vs. the whole data size. 

5 CONCLUSIONS 
Training data selection from a text database is a crucial, but 
often neglected, step in the development of ASR and TTS 
systems. In this paper, we define an objective function that 
effectively measures the quality of a selected subset. 
Moreover, we introduce a subset selection algorithm that 
optimizes the objective function. Our experimental results 
obtained in the syllabification task show that the proposed 
approach is a very promising technique that makes it possible 
to select subsets with good coverage in a systematic and 
meaningful way. The presented idea can be used in many 
different applications that require training with a text database. 

6 REFERENCES 
[1] C. Bishop, Neural Networks for Pattern Recognition, 

Oxford University Press, Oxford, UK, 1995. 
[2] D. Kahn, Syllable-Based Generalizations in English 

Phonology, Doctoral Dissertation, Massachusetts Institute 
of Technology, USA, 1976. 

[3] K. Müller, “Automatic Detection of Syllable Boundaries 
Combining the Advantages of Treebank and Bracketed 
Corpora Training”, in Proceedings of the 39th Annual 
Meeting of the Association for Computational Linguistics, 
Toulouse, France, 2001. 

[4] E. Ristad and P. Yianilos, “Learning String Edit 
Distance”, IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol.20, pp.522-532, May, 1998. 

[5] R. Sproat, Multilingual Text-to-Speech Synthesis: The 
Bell Labs Approach. Kluwer, Dordrecht, 1998. 

[6] J. Suontausta, and J. Häkkinen, ”Decision Tree Based 
Text-to-Phoneme Mapping for Speech Recognition,” In 
Proceedings of 6th ICSLP, Beijing, China, 2000. 

[7] J. Tian, “Data-Driven Approaches for Automatic 
Detection of Syllable Boundaries”, in Proceedings of 8th 
ICSLP, Jeju Islands, Korea, 2004. 

[8] J. Tian, J. Häkkinen, S. Riis, and K. Jensen, “On Text-
Based Language Identification for Multilingual Speech 
Recognition Systems, In Proceedings of 7th ICSLP, 
Denver, USA, 2002. 


