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Abstract 
Prosody is an inherent supra-segmental feature of human’s 
speech that is being employed to express e.g. attitude, emotion, 
intent and attention. Pitch is the most important feature among 
the prosodic information. For Mandarin Chinese speech, the 
pitch information is even more crucial because Mandarin is a 
tonal language in which the tone of each syllable is described 
by its pitch contour. In this paper, the concept of syllable-
based eigenpitch is introduced and investigated using principal 
component analysis (PCA). The eigenpitch and the related 
eigen features are analyzed, and it is shown that the tonal 
patterns are preserved in the eigenpitch representation. 
Furthermore, we show that the dimension of pitch in the eigen 
space can be reduced while minimizing the energy loss of the 
original pitch contour. Finally, we briefly discuss the 
quantization properties of the eigenpitch representation. We 
also present experimental results obtained using a Mandarin 
speech database. They are in line with the theoretical 
reasoning and further prove the usefulness of the proposed 
pitch modeling technique. 

1 Introduction 
The term prosody refers to certain properties of a speech 
signal that are related to audible changes in pitch, loudness 
and duration. Among these features, pitch usually plays the 
most important role. Physically, the pitch of an utterance 
depends on the rate of vibration of the vocal cords; the higher 
the rate of vibration, the higher the resulting pitch becomes. 
Another concept closely related to pitch is tone that is used to 
describe pitch variations inside short stretches of syllables. In 
tonal languages, these relative pitch differences are used 
either to differentiate between word meanings or to convey 
grammatical distinctions. Many of the languages of South-
East Asia and Africa are tonal languages. 
Mandarin Chinese is probably the most widely studied tonal 
language in which each stressed syllable has a significant 
contrastive pitch that is an integral part of the syllable. It has 
four basic tones: high level, high rising, dipping/falling and 
high falling. They are used to distinguish otherwise 
homophonous words as shown in Table 1. 
 

Word Intonation Meaning 
ma [--] mother 
ma [/] numbness 
ma [\/] horse 
ma [\] curse 

Table 1. Examples of different tones in Mandarin Chinese. 

The most commonly used representation of tonal pitch 
contours as numbers is shown in Table 2. It consists of five 
pitch levels, rather like the use of staves in music scores. They 
are labeled from the bottom upwards from 1 to 5. The tonal 
patterns are captured using the reference pitch numbers by 
observing the start, the middle and the end points of the pitch 
contour [7]. 

 
Contour Type Pattern Feature 

5     4   1 
4 
3   2 
2    3 
1     

Tone 1 
Tone 2 
Tone 3 
Tone 4 
 
 

5-5 
3-5 
2-1-4 
5-1 

H-H (High) 
L-H (Rising) 
L-L (Low) 
H-L (Falling) 

Table 2. Tonal patterns and phonological notations of four 
citation tones in Mandarin Chinese. 

Obviously pitch information plays a crucial role in speech 
synthesis systems, especially for tonal languages [3][8]. Since 
the pitch contour conveys information about word meaning 
distinction, prosodic phrase and word boundaries, it has been 
found in [5] that human beings use the pitch contour 
information to enhance the speech recognition performance. 
Various techniques have also been proposed to improve the 
noise robustness of speech recognition systems by using the 
pitch information [5]. Due to all of these reasons, pitch 
modeling is one of the key issues that must be addressed when 
dealing with tonal languages. The most popular pitch 
modeling approaches are mainly using the concept of 
separating the pitch contour into a global trend and local 
variation. Two examples following this approach are the 
superpositional modeling technique [2] and the two-stage 
modeling technique [1]. In [6], the mean and the shape of the 
syllable pitch contours are taken as two basic modeling units 
by using a 3rd order orthogonal polynomial expansion. Since 
the syllable pitch contour patterns vary dramatically from their 
canonical form, a reasonable assumption is that some data-
driven approach could preserve more precise and more 
relevant information compared to pure artificial fitting. In this 
paper, we propose a data-driven pitch modeling approach 
based on the concept of eigenpitch and study its properties to 
verify the above assumption. In addition, we provide results 
related to tonal classification and pitch compression using the 
proposed modeling approach. 
The remainder of the paper is organized as follows. We first 
describe the process of eigenpitch extraction and some of the 
basic properties of the eigenpitch representation. Then, the 
performance of the proposed modeling approach in the tonal 



classification task is discussed in Section 3. In Section 4, we 
briefly study the quantization properties of the pitch features in 
the eigen space. Finally, conclusions are drawn in Section 5. 

2 Concept of eigenpitch 

2.1 Definition 

The concept of eigenpitch is derived through the use of the 
Principal Component Analysis (PCA) [4] technique. PCA is a 
multivariate procedure that computes a compact and in a way 
optimal description of the data set by rotating the data in such 
a way that the maximum variabilities are projected onto the 
axes. Essentially, a set of correlated variables is transformed 
into a set of uncorrelated variables that are ordered by 
reducing variability. This process can be viewed as a rotation 
of the existing axes to new positions in the space defined by 
the original variables. In this new rotation, the new 
uncorrelated variables are linear combinations of the original 
variables.  The first new variable is the combination of 
variables that explains the greatest amount of variation; the 
second new variable contains the maximum amount of 
variation unexplained by the first and orthogonal to the first, 
etc. Thus the last of these variables can be removed with the 
minimum loss of real data. The main use of PCA is to reduce 
the dimensionality of a data set while retaining as much 
information as possible, and also to extract new uncorrelated 
features from the original data.  
Mathematically, the principal component analysis involves an 
eigen analysis on a covariance matrix. In the case of 
eigenpitch, the M input data vectors are represented as pitch 
contour vectors of dimension N, denoted as a xi. Then, the 
sample mean is calculated for each element, resulting in an N-
dimensional vector m. The sample covariance matrix RNxN can 
then be computed by 
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The eigen analysis on the covariance matrix RNxN yields a set 
of positive eigenvalues {λ1, λ2, ..., λN} in descending order. 
Their corresponding eigenvectors, {v1, v2, …, vN}, are the 
principal components. The first principal component retains 
the most variance. The second component retains the next 
highest residual variance, and so on. A smaller eigenvalue 
contributes much less weight to the total variance, hence if the 
feature vectors are projected onto a subset of principal 
components, omission of later components tends to introduce 
less classification error than if earlier components are omitted. 
In many cases, the first few components can retain nearly all 
of the variance, enabling satisfactory classification. If the d 
most significant principal components are selected for 
projection of the data, then the variance retained by this 
approximation is 
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2.2 Basic properties 

To demonstrate the properties of the eigenpitch, we carried out 
practical experiments using an internal Mandarin Chinese 

speech database, consisting of 84,393 syllables from a single 
female speaker. For each of the syllables, the pitch is first 
automatically extracted and then manually validated. 
Furthermore, each variable-length syllable-based pitch contour 
is converted into a 10-valued pitch contour vector (N = 10 in 
the analysis). Figure 1 shows the eigenpitch decomposed from 
the pitch contour vectors in descending order. In comparison 
with the tones defined in Table 1, the first eigenvector 
describes the pitch level, one of the key features in the tones, 
and remarkably matching tone 1 in the shape. The rest of the 
eigenvectors are used to model the pitch variation. The second 
eigenvector is obviously in line with tones 2 and 4, depending 
on the positive or negative sign. The third (and partially 
fourth) eigenvectors are the key elements to model tone 3. The 
variance retained by only using the four most significant 
principal components is 99.9%. The remaining eigenvectors 
have the following properties: 
1. They contain only a small contribution of energy or variance 

to the pitch contour. 
2. They have more errors due to imperfect pitch extraction (the 

errors can originate either from the automatic extraction or 
from the manual validation). 

3. They are the least important features for tonal classification. 
The next section will experimentally prove this. 
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Figure 1. Eigenpitch and eigenvalue of Mandarin Chinese. 

3 Tonal classification properties 

3.1 Introduction 

To demonstrate the classification properties of the eigenpitch 
representation, we performed a comparison between the 
proposed approach and an approach based on the linear 
discriminant analysis (LDA) approach. The objective of LDA 
is to perform dimensionality reduction while preserving as 
much of the class discriminatory information as possible. 
Thus, it is theoretically clear that LDA outperforms PCA in 
terms of classification capability in cases where the 
discriminatory information is not aligned with the direction of 
the maximum variance. However, we will experimentally 
show later in next subsection that the difference in 
performance on tonal classification task is marginal. In 



addition, the proposed approach has the following clear 
advantages over LDA: 
1. Eigenpitch is linguistically meaningful and in line with the 

Mandarin tone patterns. The basis patterns of LDA are 
aiming to maximize the class discriminatory information 
and thus they are very different than tone patterns. 

2. PCA is computed in an unsupervised manner. Therefore, the 
eigenpitch can be computed without tonal labeling on the 
database, which in turn makes the process very simple and 
robust. The LDA approach, on the other hand, requires the 
tonal labels. Due to the Sandhi effect, the lexical tones are 
sometimes modified in the realized speech for Mandarin, 
and thus the labeling task is nontrivial and can lead to 
errors. 

3. In speech synthesis, not only tonal discriminatory 
information but also the energy of pitch should be 
maximally preserved because the variation of pitch for the 
same tone is also very important for speech synthesis. This 
is particularly true for the unit selection procedure that 
usually has to measure the distortion or the distance between 
two pitch contours. In the previous tests discussed in 
Section 2, it is shown that 99.9% of the energy is preserved 
by using only the four most significant principal 
components. The same accuracy cannot be achieved using 
LDA. 

3.2 Discriminative measure 

The ability of a feature to distinguish between two classes 
depends on both the distance between the two classes and the 
amount of scatter within the classes. A reasonable measure of 
class discrimination must take into account both the mean and 
variance of the classes. One such measure of separability 
between two classes is Fisher’s discriminant. The idea is that 
the overall class separation is increased when the class means 
are further apart or when the spread of the classes is smaller. 
For the tasks that have more than just two classes, F-ratio 
provides a measure of separability among multiple classes. 
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The F-ratio measures the separability of a single dimension of 
the feature vector. To evaluate the discrimination of an entire 
feature set, a multivariate extension of F-ratio is the J-
measure. 
                   )( BW 1 ⋅= −trJ  (4) 
The operator tr(.) is used to indicate the trace of a matrix. The 
matrix B is the between-class covariance or the covariance of 
the class means whereas the matrix W is the within-class 
covariance or the average of the class covariances. B and W 
measure how close the classes are from each other and how 
large the classes are. These matrices can be calculated using 
the formulas. 
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where C is the number of classes, Mk is the number of feature 
vectors in the kth class, M is total number of feature vectors, 

k
ix is the ith feature vector in the kth class, and mk is the mean 

of class k. 

3.3 Experimental results 

First of all, the normalized F-ratio measuring the separability 
of each feature in the feature vector is calculated and the 
results are shown in Figure 2. It can be seen that all the 
features in the original pitch space have almost equal 
contribution for the tonal classification task. However, the first 
four features in the eigenpitch space are the most important for 
the tonal classification. As mentioned in Section 2, the most 
tonal features in the eigen space are the projected values on the 
first four eigenpitches. 
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Figure 2. F-ratio values of tonal classification between the 
original space (dotted) and the eigen space (solid). 

Next, the J-measure is used for evaluating the separability of 
the entire feature set for the original pitch, the eigenpitch and 
the LDA transformed space. Table 3 shows that the four 
principal eigenpitch components preserved the most tonal 
discriminatory information. The most discriminative LDA 
transformed features perform slightly better in the 
classification task but the difference in discrimination 
capability is marginal. The relative difference of the J-measure 
is 0.28% between PCA and LDA. 
It is also found that the eigen feature for each tonal class has 
approximately Gaussian distribution. This is a very useful 
property when designing the classifier or modeling the 
features. 
 

 10 features First 4 features 
Original Pitch 3.1992 2.0160 

Eigenpitch (PCA) 3.1992 3.1901 
LDA 3.1992 3.1992 

Table 3. Separability measure (J-measure) for the whole 
feature sets and for the first 4 features in the sets. 

4 Quantization properties 

4.1 Motivation 

Pitch and tone aspects are becoming increasingly important in 
speech recognition, synthesis, understanding and dialogue 



systems. The memory and computational resources on 
embedded portable devices are inherently scarce. Though 
these resources are expected to increase in the future portable 
devices, the number of applications running simultaneously is 
also very likely to increase. The memory needed for the pitch 
contour information is usually rather high, and thus an 
efficient coding or compression method is needed. Here, we 
briefly discuss some quantization properties of the eigenpitch 
representation. We show that in order to minimize the size of 
the pitch contour while keeping the distortion minimized, an 
unequal bit allocation is needed for scalar quantization. More 
thorough investigation on the quantization properties will be 
done as a part of our future research on this topic. 

4.2 Optimal bit allocation 

For the original pitch, the variance of each feature is almost 
equally same. Thus, the same number of bits is assigned to all 
features. The features in the eigenpitch space have, however, 
very different variances. Since the eigenvalues are actually the 
same as the variances of the eigen features, the middle figure 
at the bottom of Figure 1 shows the variances. A reasonable 
assumption based on this figure is that unequal bit allocation 
may be needed to optimally code the pitch. To analyze the 
effects of quantization, let the ith feature be encoded with a 
fixed number of bits bi. Now, by assuming that a uniform 
scalar quantizer is used for the quantization, it is possible to 
represent the uniformly distributed quantization error ei as  
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Therefore, the squared quantization error is 
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Given a constant number of bits B for the whole feature set, 
the optimal bit allocation can be estimated by minimizing the 
following Lagrangian cost function (9). By introducing the 
Lagrange multiplier µ, we have  
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where λi is the ith eigenvalue. 
By applying Equation (10) for the feature vectors in eigen 
space obtained from the pitch contours in our internal 
Mandarin Chinese speech database, we get the optimal bit 
allocation as 

N
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∆∆∆∆bopt=[5.12 1.73 0.40 -0.40 -0.81 -1.06 -1.13 -1.22 -1.30 -1.34]; 
With the integer of bit allocation, we approximately have 
Int(∆∆∆∆bopt)=[5 2 0 -1 -1 -1 -1 -1 -1 -1]; 
A gain value is defined to measure the efficiency between 
equal and optimal bits allocation coding schemes, 
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For having the same distortion, the optimal bit allocation can 
save 3.47 bits in average, when compared to the equal bit 
allocation. For example, if 1 byte (8 bits) is assigned to each 
feature in the eigen space with equal bit allocation, and each 
feature vector set contains 10 features, then the saving 
achieved using the optimal bit allocation is 30.1%, for the 
same distortion level.  

5 Conclusions 
In this paper, we focused on the pitch modeling and analysis in 
the Mandarin Chinese language. The proposed method first 
transforms the pitch contour into a lower-dimensional 
representation in the eigen space by using the well-known 
PCA technique. The properties and the advantages of the 
eigenpitch are studied in terms of discrimination capability and 
energy preserving. Moreover, we demonstrate the quantization 
properties of the proposed eigenpitch representation by 
presenting a bit allocation scheme that efficiently codes the 
pitch features in the eigen space given a fixed number of bits 
for every feature vector. 
We have carried out experiments with our internal Mandarin 
Chinese speech database. The experimental results are in line 
with the theoretical analysis and further prove the efficiency of 
the proposed pitch modeling approach and optimal bits 
allocation scheme. Based on the presented analysis and 
practical results, it can be concluded that this paper provides a 
very promising method that can be used in many of speech 
related applications. 
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