
Gaussian Selection with Non-Overlapping Clusters for ASR in Embedded Devices

Jussi Leppänen and Imre Kiss
Multimedia Technologies Laboratory, Nokia Research Center

Tampere, Finland

ABSTRACT
In this paper we propose a memory efficient version of the
Gaussian Selection (GS) scheme, which is used for speeding up the
likelihood calculations of an ASR system. The memory savings are
achieved by using non-overlapping (disjoint) clusters instead of the
overlapping clusters normally used in GS. As we will show, the
new scheme achieves 66% computational savings with a relative
increase in word error rate (WER) of 4%. We will also show, that
combining the new GS scheme with frame rate reduction and
feature masking provides further savings in computation. 75% (4%
increase in WER) and 68% (3.5% increase in WER) savings were
obtained by adding frame rate reduction and feature masking,
respectively.

1. INTRODUCTION
As voice user interface technology is maturing, it is becoming a
more and more important input/output method for small, embedded
devices. Using a voice user interface is especially convenient when
the device is being used in situations where normal input methods
are not available.

For embedded devices, low memory and computational
complexity implementations of the ASR algorithms is very
important. Even though the computational power of embedded
devices in rising constantly, cost will always be an important
factor in designing mass-market products. Moreover, there will
always be an increasing amount of applications competing for the
same computational resources as the voice UI.

In a HMM based speech recognizer more than half of the
computational time can be spent in calculating the density
likelihoods. Thus, any decrease in density calculation time will
have an effect on the overall speed of the recognition algorithm.
Numerous efficient algorithms have been proposed that address
this problem. Using vector or scalar quantization of the acoustic
model parameters, for example, allows for the acoustic models to
be stored in a smaller amount of memory and for faster likelihood
calculation without affecting recognition performance [1,2]. In [3],
several techniques (feature component masking, variable rate
updating of feature components and density pruning) for reduced
complexity likelihood calculation are proposed. In [4], Gaussian
Selection (GS) is used to select a shortlist of Gaussians for which
to calculate accurate likelihoods, thus reducing computation.

In this paper, we look at a few of the above methods for
speeding up the process of calculating the density likelihoods.
More, specifically, we examine GS, for which we present here a
memory efficient implementation. We also look at how GS
performs in combination with frame rate reduction and feature
vector masking.

The rest of the paper is organized as follows. First, in Section
2.1, we will review GS. Then, in Section 2.2, we will introduce the

proposed memory efficient GS implementation. Section 3 we look
at two methods, frame rate reduction and feature vector masking,
which can also be used to reduce the computational complexity of
the likelihood computations. In Section 4 we show the results of
recognition experiments done using the original GS and the
proposed GS method. In addition we show how frame rate
reduction and feature masking work together with GS. Conclusions
are then finally drawn in Section 5.

2. ALGORITHM DESCRIPTIONS
2.1 Gaussian Selection
GS was first introduced by Bocchieri in [4] and is used to limit the
number of likelihood calculations needed during decoding. The
motivation in GS is that the likelihood of a feature vector can be
approximated accurately only when it does not land on the tail of a
Gaussian density [4]. Also, when the feature vector does land on
the tail of a Gaussian density, the likelihood will be small, and thus
it won’t contribute much to the state score. This implies that it
would be beneficial to determine quickly the subset of Gaussians
that the feature vector is not an outlier to, before the actual
likelihood calculation. The likelihoods of these Gaussians would
then be calculated and the likelihoods of the rest of the Gaussians
would be set to some small constant.

Gaussian densities are first grouped together into overlapping
neighborhoods. These neighborhoods are created by first applying
k-means clustering on the densities. The distance measure used in
the clustering is a weighted Euclidian distance metric:

 (){ }
2

1
)()()(1),(∑

=
−=∂

d

k
jiji kkkw

d
µµµµ (1)

where d is the dimensionality of the feature vector, µi(k) is the
kth component of the mean of the ith Gaussian density and w(k) is a
weight equal to the kth diagonal element of the inverse square root
of the average of the covariances of the Gaussian in the acoustic
model set.

After clustering, the cluster centers are stored and a
neighborhood of Gaussians is determined for each of them. The
neighborhood of a cluster center comprises all Gaussians for which
the following equation holds:

()

Θ≤
−∑

=

d

i avg

m

iU
iic

d 1

2

)(
)()(1 µ

 (2)

where c(i) is the ith component of the cluster center, and Uavg(i)
is the ith diagonal component of the average of the covariance
matrices of the Gaussians in the model set. Θ is a threshold, which
controls the size of the neighborhood. It is also possible to use state
information during the neighborhood creation to obtain better

performance, as described in [5]. In the experiments presented in
this paper, however, state information is not used during clustering.

During decoding, after a feature vector is obtained, the cluster
center that is closest to the feature vector is found Equation 1 is
used for the distance calculation by replacing µj with the current
feature vector. The likelihoods for the Gaussians that belong to the
neighborhood of this cluster center are then evaluated. The
likelihood of the other Gaussians is set to some small constant
value. The number of likelihoods that are calculated for every
frame is controlled by the threshold Θ (see Equation 2). The
smaller the Θ value, the less likelihoods are calculated which
results in reduced computational complexity. Setting Θ too low,
will however, result in lower recognition accuracies as too few
likelihoods are calculated.
2.2 Gaussian Selection with non-overlapping clusters

2.2.1 Motivation

While GS has been shown to reduce the computation needed for
the calculation of the density probabilities significantly, its use in
embedded devices might not be justified because of increased
memory requirements. The increased memory footprint needed for
GS is due to two factors. First, the cluster centers and the distance
weight need to be stored. The memory needed for these is however
usually negligible when compared to the memory needed to store
the actual densities. The number of neighborhoods ranges usually
from 64 to 512, while the number of densities in a triphone
acoustic model set might be several tens of thousands. Another
source for the increased memory footprint is due to the fact that the
neighborhood member information needs to be stored. The
memory needed for this information is quite high. Consider for
example an acoustic model set with 25K densities and 256
neighborhoods. Since each density may belong to any of the
neighborhoods, a 25,000 x 256 (1 bit elements) table that holds the
neighborhood member information needs to be stored along with
the models. This requires 800KB of memory. The size of a
subspace distribution clustered acoustic model set which uses 4-bit
quantization of the mean-variance value pairs requires about 600-
700KB [1]. This means that the GS information would more than
double the memory footprint of the acoustic models!

If, however, disjoint clusters were to be used instead of the
overlapping neighborhoods, the cluster member information would
require much less memory. This would be achieved by first
arranging the densities in the memory according to the cluster
membership information such that the densities belonging to the
first cluster are placed first and so on. Now, only a table with as
many elements as there are clusters would be needed. The
elements in the table would represent the indices of the first
density that belongs to the respective cluster.

As mentioned in [4], using disjoint clusters results in problems
when the feature vector lands near the edge of a cluster. When this
happens, the densities that are close to the feature vector but lie on
the ‘wrong side’ of the cluster border are not evaluated. This
problem can be mitigated by keeping the cluster sizes relatively
small (smaller than the neighborhoods) and picking several clusters
for evaluation instead of picking just the closest cluster.

Using disjoint clusters and picking more than one of them are
the main ideas of the GS scheme proposed in this paper. This new
scheme will be referred to as DCGS (disjoint cluster GS) for the
rest of the paper. The clustering procedure and the cluster selection

process done during decoding is explained next, in Sections 2.2.2
and 2.2.3, respectively.

2.2.2 Density clustering

In DCGS the densities are clustered into disjoint clusters using a
binary divisive k-means clustering algorithm. The clustering is
done such that every density is first placed in a single cluster
whose mean is then calculated (average of the Gaussian means).
The cluster is then split by perturbing the mean in opposite
directions by a small amount and then reassigning the densities to
the newly obtained means. K-means is then run for a few iterations
and the clusters are split again. This procedure is repeated until a
desired number of clusters is obtained. The distance metric used in
the clustering is the same as is used in the original GS scheme
(Equation 1).

During clustering a threshold was set such that any cluster,
whose member count was below the aforementioned threshold,
was not split. The use of the threshold resulted in the algorithm
producing clusters with more even member counts than when the
threshold was not used. This, in turn, means that the computational
load is more predictable, as the number of clusters chosen for
every frame is relatively constant (and every cluster has a similar
number of cluster members).

2.2.3 Density selection

As mentioned before, since we are using disjoint clusters, more
than one cluster needs to be selected for which to calculate the
density probabilities. There are at least two ways of doing this.
One possible way is to use a threshold-based selection such that all
clusters are selected whose distance to the current feature vector is
less than a certain threshold. This method is referred to as DCGS-
T. Another way is to pick the N clusters that are closest to the
current feature vector. This will be referred to as DCGS-N. The
distance measure used here is also the one in Equation 1.

Notice that the number of likelihood calculations done per
frame is controlled by either the N value (in DCGS-N) or the
distance threshold (in DCGS-T). The N value and the threshold
affect only the number of clusters that are chosen for likelihood
calculation. Thus, it is easy to change them to increase or decrease
the number of likelihood calculations done per frame, even on the
fly, during decoding. This is not the case, however, in the original
GS scheme, where neighborhoods are used. There the amount of
likelihood calculations is controlled by the Θ value, which controls
the size of the neighborhoods. This means that, when the Θ value
is changed, the neighborhood members need to be calculated again
to reflect the new Θ value.

3. FRAME RATE REDUCTION AND FEATURE
VECTOR MASKING

In this section we describe two methods, frame rate reduction and
feature vector masking, which also address the problem of costly
density likelihood computation [3]. These methods have been
found to decrease the computational complexity of the likelihood
computation.

Figure 1 Word error rate vs. the percentage of likelihoods calculated per frame for GS, DCGS-N and DCGS-T.

3.1 Frame rate reduction
Frame rate reduction [3] is a simple and effective way of reducing
the computational complexity of the density likelihood
calculations. When frame rate reduction is used, the likelihoods are
calculated e.g., for every other frame and then used again for the
following frame. The motivation behind this is the assumption that
consecutive feature vectors do not differ very much from each
other. Thus, the density likelihoods for consecutive frames will be
similar. It is also possible to calculate the likelihoods only for
every third, fourth, etc. frame. The recognition accuracy will,
however, drop quite fast if the likelihoods are calculated for less
than every third or fourth frame [3].
3.2 Feature vector masking
The idea behind feature masking is that feature components
contribute differently to the density likelihoods and the overall
recognition performance [3]. It turns out that some components can
be left out or masked altogether without affecting the recognition
performance. The computational complexity is affected as the
density likelihoods are calculated based on only the non-masked
components. The masks can be determined, for example, by
masking each feature component separately and checking the
recognition performance for each such mask. The mask that is to
be used is then created by combining the single component masks
that affected the recognition performance the least.

4. EXPERIMENTS

4.1 Experimental setup
The performance of the proposed DCGS scheme was tested on a
medium vocabulary continuous speech recognition task. The task
vocabulary was around 1000 words. The acoustic models used in
the experiments were standard decision tree state-tied 3-state
triphone HMMs with 16 densities per state. The total number of
densities in the set was 26K. The models were trained on an in-
house training set containing continuous speech (US English). For
the GS experiments, the densities were clustered into 128
neighborhoods (GS) or 150 clusters (DCGS). These cluster and
neighborhood counts were found to work best in previous

experiments, not presented here. The language model used here
was a bigram language model.

The front-end used in the experiments was based on FFT-
derived Mel cepstral coefficients and their first and second order
derivatives (39 components in total). Recursive mean removal was
applied on all components of the resulting feature vectors, and the
variance of the energy component and its derivatives was
normalized to unity [6].
4.2 Experimental Results
Figure 1, shows the word error rate achieved in the recognition
experiments for the original GS scheme as well as for the proposed
DCGS-N and DCGS-T schemes. The results for the original GS
scheme were obtained by using 1.1, 1.3, 1.5, 1.7 and 2.3 for the Θ
values. For DCGS-N, the N-values used were 32, 40, 48, 56, 64
and 72. The distance thresholds used in DCGS-T were 80, 90, 100
and 120. As it can be seen, the GS and DCGS-N schemes perform
nicely and also very much alike, with respect to word error rate
and computational savings. DCGS-N gives a word error rate of
9.43% at 34.6% of likelihoods computed while GS gives
approximately the same word error rate at 29% of likelihoods
calculated. DCGS-T, however, does not perform very well. The
word error rate increases quite fast as the density threshold is
tightened.

4.2.1 Frame rate reduction

To see whether frame rate reduction could be used in conjunction
with GS to provide further savings in computational complexity,
the following tests were performed. First, the recognizer was run
without GS, but with the density frame rate set to 2, which meant
that the density likelihoods were calculated for every other frame
and reused for the next frame. The word error rate in this
experiment turned out to be 9.29%. By looking at Figure 1, it can
be seen that, the same number of likelihood computations can be
achieved by using GS such that the word error rate is around 9.2%.
So, based on word error rate and computational complexity it
would seem that using GS is a slightly better option than using
frame rate reduction.

However, things look a bit different when both GS and frame
rate reduction are applied simultaneously. Figure 2, shows the
word error rates for the DCGS-N scheme (DCGS-N) and the

10 20 30 40 50 60 70 80 90 100
8

9

10

11

12

Percentage of likelihoods computed

W
ER

 /
%

GS
DCGS-N
DCGS-T

DCGS-N scheme and frame rate reduction (DCGS-N+fr2). Note
that in the figure the percentages of likelihoods calculated are
relative to the case where no GS or frame rate reduction is used.
Thus, when only frame rate reduction is enabled, the percentage is
50. From the figure, it is evident that frame rate reduction provides
additional savings in computation. The same word error rate
(~9.4%) is achieved by the DCGS-N scheme at around 34% of
likelihoods evaluated as for the DCGS-N+frame rate reduction
scheme at 25% likelihoods evaluated.

4.2.2 Feature masking

The performance of feature masking was tested together with the
DCGS-N scheme. Two different feature masks were tested, one
with 9 components masked and another one with 13 components
masked. The results are presented in Figure 3. The masking was
done such that it was not applied to the cluster selection process.
Only the density calculation was affected. From the figure, it can
be seen, that when combining with DCGS, a 9-feature mask brings
further savings in likelihood calculation, while the 13-feature mask
does not. For the 13-component mask, the word error rate is
already relatively high (9.55%) before applying DCGS-N. Note
that the likelihood percentages in Figure 3 have the savings from
the feature masking included in them. For example, setting N to 64
results in 47.8% of the likelihoods to be computed, but when 9 out
of the 39 components are masked the equivalent percentage is
(47.8%*30/39=) 36.8%.

5. CONCLUSIONS
In this paper, we examined the performance of a memory efficient
Gaussian Selection algorithm intended for use in embedded ASR
systems. The proposed algorithm performed nearly at the same
level on a medium vocabulary continuous speech recognition task
as the original Gaussian Selection algorithm but with significantly
reduced memory requirements. The proposed algorithm was able
to obtain a 66% complexity reduction in likelihood computation
with only a 4.1% relative increase in word error rate. When
applying frame rate reduction in addition to the proposed GS

scheme, a 75% complexity reduction was obtained with the same
relative increase in word error rate. Combining the proposed GS
scheme with feature masking also provided additional savings. A
complexity reduction of 68% was achieved with a 3.5% relative
increase in word error rate.

6. ACKNOWLEDGEMENTS
This work has partially been funded by the European Union under
the integrated project TC-STAR - Technology and Corpora for
Speech-to-Speech Translation - (IST-2002-FP6-506738,
http://www.tc-star.org).

7. REFERENCES
[1] E. Bocchieri, and B. Mak, “Subspace Distribution Clustering
for Continuous Observation Density Hidden Markov Models,” in
Proceedings of the 5th European Conference on Speech
Communication Technology, vol. 1, pp.107-110, 1997.
[2] M. Vasilache, “Speech Recognition Using HMMs with
Quantized Parameters,” in Proceedings of Eurospeech 2001,
Aalborg, Denmark, vol. 2, pp. 1265-1268, 2001.
[3] I. Kiss, and M. Vasilache, “Low Complexity Techniques for
Embedded ASR Systems,” in Proceedings of ICSLP 2002, Denver,
Colorado, USA, pp. 1593-1596, 2002.
[4] E. Bocchieri, “Vector Quantization for Efficient computation
of continuous density likelihoods,” in Proceedings of ICASSP
1993, Minneapolis, MN, USA, vol. 2, pp. II-692 – II-695, 1993.
[5] M. J. F. Gales, K. M. Knill, and S. J. Young, “State-Based
Gaussian Selection in Large Vocabulary Continuous Speech
Recognition Using HMM’s,” IEEE Transactions on Speech and
Audio Processing, vol. 7, no. 2, March 1999.
[6] O. Viikki, D. Bye, and K. Laurila, “A Recursive
Feature Vector Normalization Approach for Robust Speech
Recognition in Noise,” in Proceedings of ICASSP 1998,
Seattle, Washington, USA, pp. 1692-1695, 1998.

Figure 2 Word error rate vs. the percentage of
likelihoods calculated per frame for DCGS-N and
DCGS-N combined with frame rate reduction.

0 10 20 30 40 50
9

9.5

10

10.5

Percentage of likelihoods computed

W
ER

 /
%

DCGS-N
DCGS-N+fr2

20 30 40 50 60 70 80
9

9.5

10

Percentage of likelihoods computed

W
ER

 /
%

DCGS-N
DCGS-N+mask9
DCGS-N+mask13

Figure 3 Word error rate vs. the percentage of
likelihoods calculated per frame for DCGS-N and
DCGS-N combined with feature masking.

