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ABSTRACT 
In this paper we propose a memory efficient version of the 
Gaussian Selection (GS) scheme, which is used for speeding up the 
likelihood calculations of an ASR system. The memory savings are 
achieved by using non-overlapping (disjoint) clusters instead of the 
overlapping clusters normally used in GS. As we will show, the 
new scheme achieves 66% computational savings with a relative 
increase in word error rate (WER) of 4%. We will also show, that 
combining the new GS scheme with frame rate reduction and 
feature masking provides further savings in computation. 75% (4% 
increase in WER) and 68% (3.5% increase in WER) savings were 
obtained by adding frame rate reduction and feature masking, 
respectively.  

1. INTRODUCTION 
As voice user interface technology is maturing, it is becoming a 
more and more important input/output method for small, embedded 
devices. Using a voice user interface is especially convenient when 
the device is being used in situations where normal input methods 
are not available. 

For embedded devices, low memory and computational 
complexity implementations of the ASR algorithms is very 
important. Even though the computational power of embedded 
devices in rising constantly, cost will always be an important 
factor in designing mass-market products. Moreover, there will 
always be an increasing amount of applications competing for the 
same computational resources as the voice UI. 

In a HMM based speech recognizer more than half of the 
computational time can be spent in calculating the density 
likelihoods. Thus, any decrease in density calculation time will 
have an effect on the overall speed of the recognition algorithm. 
Numerous efficient algorithms have been proposed that address 
this problem. Using vector or scalar quantization of the acoustic 
model parameters, for example, allows for the acoustic models to 
be stored in a smaller amount of memory and for faster likelihood 
calculation without affecting recognition performance [1,2]. In [3], 
several techniques (feature component masking, variable rate 
updating of feature components and density pruning) for reduced 
complexity likelihood calculation are proposed. In [4], Gaussian 
Selection (GS) is used to select a shortlist of Gaussians for which 
to calculate accurate likelihoods, thus reducing computation. 

In this paper, we look at a few of the above methods for 
speeding up the process of calculating the density likelihoods. 
More, specifically, we examine GS, for which we present here a 
memory efficient implementation. We also look at how GS 
performs in combination with frame rate reduction and feature 
vector masking. 

The rest of the paper is organized as follows. First, in Section 
2.1, we will review GS. Then, in Section 2.2, we will introduce the 

proposed memory efficient GS implementation. Section 3 we look 
at two methods, frame rate reduction and feature vector masking, 
which can also be used to reduce the computational complexity of 
the likelihood computations. In Section 4 we show the results of 
recognition experiments done using the original GS and the 
proposed GS method. In addition we show how frame rate 
reduction and feature masking work together with GS. Conclusions 
are then finally drawn in Section 5. 

2. ALGORITHM DESCRIPTIONS 
2.1 Gaussian Selection 
GS was first introduced by Bocchieri in [4] and is used to limit the 
number of likelihood calculations needed during decoding.  The 
motivation in GS is that the likelihood of a feature vector can be 
approximated accurately only when it does not land on the tail of a 
Gaussian density [4]. Also, when the feature vector does land on 
the tail of a Gaussian density, the likelihood will be small, and thus 
it won’t contribute much to the state score. This implies that it 
would be beneficial to determine quickly the subset of Gaussians 
that the feature vector is not an outlier to, before the actual 
likelihood calculation. The likelihoods of these Gaussians would 
then be calculated and the likelihoods of the rest of the Gaussians 
would be set to some small constant. 

Gaussian densities are first grouped together into overlapping 
neighborhoods. These neighborhoods are created by first applying 
k-means clustering on the densities. The distance measure used in 
the clustering is a weighted Euclidian distance metric: 
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where d is the dimensionality of the feature vector, µi(k) is the 
kth component of the mean of the ith Gaussian density and w(k) is a 
weight equal to the kth diagonal element of the inverse square root 
of the average of the covariances of the Gaussian in the acoustic 
model set. 

After clustering, the cluster centers are stored and a 
neighborhood of Gaussians is determined for each of them. The 
neighborhood of a cluster center comprises all Gaussians for which 
the following equation holds: 
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where c(i) is the ith component of the cluster center, and Uavg(i) 
is the ith diagonal component of the average of the covariance 
matrices of the Gaussians in the model set. Θ is a threshold, which 
controls the size of the neighborhood. It is also possible to use state 
information during the neighborhood creation to obtain better 



performance, as described in [5]. In the experiments presented in 
this paper, however, state information is not used during clustering. 

During decoding, after a feature vector is obtained, the cluster 
center that is closest to the feature vector is found Equation 1 is 
used for the distance calculation by replacing µj with the current 
feature vector. The likelihoods for the Gaussians that belong to the 
neighborhood of this cluster center are then evaluated. The 
likelihood of the other Gaussians is set to some small constant 
value. The number of likelihoods that are calculated for every 
frame is controlled by the threshold Θ (see Equation 2). The 
smaller the Θ value, the less likelihoods are calculated which 
results in reduced computational complexity. Setting Θ too low, 
will however, result in lower recognition accuracies as too few 
likelihoods are calculated.   
2.2 Gaussian Selection with non-overlapping clusters 

2.2.1 Motivation 

While GS has been shown to reduce the computation needed for 
the calculation of the density probabilities significantly, its use in 
embedded devices might not be justified because of increased 
memory requirements. The increased memory footprint needed for 
GS is due to two factors. First, the cluster centers and the distance 
weight need to be stored. The memory needed for these is however 
usually negligible when compared to the memory needed to store 
the actual densities. The number of neighborhoods ranges usually 
from 64 to 512, while the number of densities in a triphone 
acoustic model set might be several tens of thousands. Another 
source for the increased memory footprint is due to the fact that the 
neighborhood member information needs to be stored. The 
memory needed for this information is quite high. Consider for 
example an acoustic model set with 25K densities and 256 
neighborhoods. Since each density may belong to any of the 
neighborhoods, a 25,000 x 256 (1 bit elements) table that holds the 
neighborhood member information needs to be stored along with 
the models. This requires 800KB of memory. The size of a 
subspace distribution clustered acoustic model set which uses 4-bit 
quantization of the mean-variance value pairs requires about 600-
700KB [1]. This means that the GS information would more than 
double the memory footprint of the acoustic models! 

If, however, disjoint clusters were to be used instead of the 
overlapping neighborhoods, the cluster member information would 
require much less memory. This would be achieved by first 
arranging the densities in the memory according to the cluster 
membership information such that the densities belonging to the 
first cluster are placed first and so on. Now, only a table with as 
many elements as there are clusters would be needed. The 
elements in the table would represent the indices of the first 
density that belongs to the respective cluster. 

As mentioned in [4], using disjoint clusters results in problems 
when the feature vector lands near the edge of a cluster. When this 
happens, the densities that are close to the feature vector but lie on 
the ‘wrong side’ of the cluster border are not evaluated. This 
problem can be mitigated by keeping the cluster sizes relatively 
small (smaller than the neighborhoods) and picking several clusters 
for evaluation instead of picking just the closest cluster.  

Using disjoint clusters and picking more than one of them are 
the main ideas of the GS scheme proposed in this paper. This new 
scheme will be referred to as DCGS (disjoint cluster GS) for the 
rest of the paper. The clustering procedure and the cluster selection 

process done during decoding is explained next, in Sections 2.2.2 
and 2.2.3, respectively. 

2.2.2 Density clustering 

In DCGS the densities are clustered into disjoint clusters using a 
binary divisive k-means clustering algorithm. The clustering is 
done such that every density is first placed in a single cluster 
whose mean is then calculated (average of the Gaussian means). 
The cluster is then split by perturbing the mean in opposite 
directions by a small amount and then reassigning the densities to 
the newly obtained means. K-means is then run for a few iterations 
and the clusters are split again. This procedure is repeated until a 
desired number of clusters is obtained.  The distance metric used in 
the clustering is the same as is used in the original GS scheme 
(Equation 1). 

During clustering a threshold was set such that any cluster, 
whose member count was below the aforementioned threshold, 
was not split. The use of the threshold resulted in the algorithm 
producing clusters with more even member counts than when the 
threshold was not used. This, in turn, means that the computational 
load is more predictable, as the number of clusters chosen for 
every frame is relatively constant (and every cluster has a similar 
number of cluster members). 

2.2.3  Density selection 

As mentioned before, since we are using disjoint clusters, more 
than one cluster needs to be selected for which to calculate the 
density probabilities. There are at least two ways of doing this. 
One possible way is to use a threshold-based selection such that all 
clusters are selected whose distance to the current feature vector is 
less than a certain threshold. This method is referred to as DCGS-
T. Another way is to pick the N clusters that are closest to the 
current feature vector. This will be referred to as DCGS-N. The 
distance measure used here is also the one in Equation 1. 

Notice that the number of likelihood calculations done per 
frame is controlled by either the N value (in DCGS-N) or the 
distance threshold (in DCGS-T). The N value and the threshold 
affect only the number of clusters that are chosen for likelihood 
calculation. Thus, it is easy to change them to increase or decrease 
the number of likelihood calculations done per frame, even on the 
fly, during decoding. This is not the case, however, in the original 
GS scheme, where neighborhoods are used. There the amount of 
likelihood calculations is controlled by the Θ value, which controls 
the size of the neighborhoods. This means that, when the Θ value 
is changed, the neighborhood members need to be calculated again 
to reflect the new Θ value. 

3. FRAME RATE REDUCTION AND FEATURE 
VECTOR MASKING 

In this section we describe two methods, frame rate reduction and 
feature vector masking, which also address the problem of costly 
density likelihood computation [3]. These methods have been 
found to decrease the computational complexity of the likelihood 
computation.  
 
 
 
 
 
 



Figure 1 Word error rate vs. the percentage of likelihoods calculated per frame for GS, DCGS-N and DCGS-T. 

 
3.1 Frame rate reduction 
Frame rate reduction [3] is a simple and effective way of reducing 
the computational complexity of the density likelihood 
calculations. When frame rate reduction is used, the likelihoods are 
calculated e.g., for every other frame and then used again for the 
following frame. The motivation behind this is the assumption that 
consecutive feature vectors do not differ very much from each 
other. Thus, the density likelihoods for consecutive frames will be 
similar. It is also possible to calculate the likelihoods only for 
every third, fourth, etc. frame. The recognition accuracy will, 
however, drop quite fast if the likelihoods are calculated for less 
than every third or fourth frame [3]. 
3.2 Feature vector masking 
The idea behind feature masking is that feature components 
contribute differently to the density likelihoods and the overall 
recognition performance [3]. It turns out that some components can 
be left out or masked altogether without affecting the recognition 
performance. The computational complexity is affected as the 
density likelihoods are calculated based on only the non-masked 
components. The masks can be determined, for example, by 
masking each feature component separately and checking the 
recognition performance for each such mask. The mask that is to 
be used is then created by combining the single component masks 
that affected the recognition performance the least. 

4. EXPERIMENTS 

4.1 Experimental setup 
The performance of the proposed DCGS scheme was tested on a 
medium vocabulary continuous speech recognition task. The task 
vocabulary was around 1000 words. The acoustic models used in 
the experiments were standard decision tree state-tied 3-state 
triphone HMMs with 16 densities per state. The total number of 
densities in the set was 26K. The models were trained on an in-
house training set containing continuous speech (US English). For 
the GS experiments, the densities were clustered into 128 
neighborhoods (GS) or 150 clusters (DCGS). These cluster and 
neighborhood counts were found to work best in previous 

experiments, not presented here. The language model used here 
was a bigram language model. 

The front-end used in the experiments was based on FFT-
derived Mel cepstral coefficients and their first and second order 
derivatives (39 components in total). Recursive mean removal was 
applied on all components of the resulting feature vectors, and the 
variance of the energy component and its derivatives was 
normalized to unity [6]. 
4.2 Experimental Results 
Figure 1, shows the word error rate achieved in the recognition 
experiments for the original GS scheme as well as for the proposed 
DCGS-N and DCGS-T schemes. The results for the original GS 
scheme were obtained by using 1.1, 1.3, 1.5, 1.7 and 2.3 for the Θ 
values. For DCGS-N, the N-values used were 32, 40, 48, 56, 64 
and 72. The distance thresholds used in DCGS-T were 80, 90, 100 
and 120. As it can be seen, the GS and DCGS-N schemes perform 
nicely and also very much alike, with respect to word error rate 
and computational savings. DCGS-N gives a word error rate of 
9.43% at 34.6% of likelihoods computed while GS gives 
approximately the same word error rate at 29% of likelihoods 
calculated. DCGS-T, however, does not perform very well. The 
word error rate increases quite fast as the density threshold is 
tightened. 

4.2.1 Frame rate reduction 

To see whether frame rate reduction could be used in conjunction 
with GS to provide further savings in computational complexity, 
the following tests were performed. First, the recognizer was run 
without GS, but with the density frame rate set to 2, which meant 
that the density likelihoods were calculated for every other frame 
and reused for the next frame. The word error rate in this 
experiment turned out to be 9.29%. By looking at Figure 1, it can 
be seen that, the same number of likelihood computations can be 
achieved by using GS such that the word error rate is around 9.2%. 
So, based on word error rate and computational complexity it 
would seem that using GS is a slightly better option than using 
frame rate reduction.  

However, things look a bit different when both GS and frame 
rate reduction are applied simultaneously. Figure 2, shows the 
word error rates for the DCGS-N scheme (DCGS-N) and the 
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DCGS-N scheme and frame rate reduction (DCGS-N+fr2). Note 
that in the figure the percentages of likelihoods calculated are 
relative to the case where no GS or frame rate reduction is used. 
Thus, when only frame rate reduction is enabled, the percentage is 
50. From the figure, it is evident that frame rate reduction provides 
additional savings in computation. The same word error rate 
(~9.4%) is achieved by the DCGS-N scheme at around 34% of 
likelihoods evaluated as for the DCGS-N+frame rate reduction 
scheme at 25% likelihoods evaluated. 

4.2.2 Feature masking 

The performance of feature masking was tested together with the 
DCGS-N scheme. Two different feature masks were tested, one 
with 9 components masked and another one with 13 components 
masked. The results are presented in Figure 3. The masking was 
done such that it was not applied to the cluster selection process. 
Only the density calculation was affected. From the figure, it can 
be seen, that when combining with DCGS, a 9-feature mask brings 
further savings in likelihood calculation, while the 13-feature mask 
does not. For the 13-component mask, the word error rate is 
already relatively high (9.55%) before applying DCGS-N. Note 
that the likelihood percentages in Figure 3 have the savings from 
the feature masking included in them. For example, setting N to 64 
results in 47.8% of the likelihoods to be computed, but when 9 out 
of the 39 components are masked the equivalent percentage is 
(47.8%*30/39=) 36.8%. 

5. CONCLUSIONS 
In this paper, we examined the performance of a memory efficient 
Gaussian Selection algorithm intended for use in embedded ASR 
systems. The proposed algorithm performed nearly at the same 
level on a medium vocabulary continuous speech recognition task 
as the original Gaussian Selection algorithm but with significantly 
reduced memory requirements. The proposed algorithm was able 
to obtain a 66% complexity reduction in likelihood computation 
with only a 4.1% relative increase in word error rate. When 
applying frame rate reduction in addition to the proposed GS 

scheme, a 75% complexity reduction was obtained with the same 
relative increase in word error rate. Combining the proposed GS 
scheme with feature masking also provided additional savings. A 
complexity reduction of 68% was achieved with a 3.5% relative 
increase in word error rate. 
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Figure 2 Word error rate vs. the percentage of 
likelihoods calculated per frame for DCGS-N and 
DCGS-N combined with frame rate reduction. 
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Figure 3 Word error rate vs. the percentage of 
likelihoods calculated per frame for DCGS-N and 
DCGS-N combined with feature masking. 


