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Abstract 
Pronunciation dictionaries are often used with other data-
driven methods to model the pronunciations in phoneme-
based automatic speech recognition (ASR) and text-to-speech 
(TTS) systems. The dictionaries usually take a great amount of 
memory, which is a limiting factor in portable handheld 
devices. Compressing the pronunciation dictionaries results in 
minimal transmission bandwidth and less storage memory. In 
this paper we present a new procedure to efficiently compress 
pronunciation dictionaries. First, a novel method transforms 
the dictionary to a lower entropy representation. Second, the 
variability in the aligned pronunciation dictionary is reduced 
to further lower its entropy. Finally, generic lossless 
compression is applied on the transformed dictionary. 
Experiments were carried out on English names and words 
from US English CMU dictionary. The proposed scheme 
achieved 37.5% improvement over general-purpose lossless 
text compression. 

1. Introduction 
Pronunciation dictionaries are commonly used for language 
learning, automatic speech recognition and speech synthesis. 
Efficiently compressing the dictionary results in minimal 
bandwidth usage and less memory required. This paper 
focuses on the application of the compressed pronunciation 
dictionary in phoneme-based ASR and TTS systems. Our 
multilingual system, capable of handling dynamic 
vocabularies, consists of several units [1]. At first, the 
language identification module identifies the language of a 
given word. Next, pronunciation modeling is applied in order 
to obtain the phonetic transcription of the word. Finally, the 
recognition model for the word is constructed by 
concatenating multilingual acoustic monophone models 
according to the phonetic transcription. The recognizer can 
automatically cope with multilingual entries without any 
assistance from the user. The phonemic transcription is also 
used for TTS. Pronunciation modeling is of critical importance 
in the system. The pronunciation models are language-
dependent. Different methods that can be applied are 
pronunciation rules, pronunciation dictionaries and data-
driven approaches [2]. The advantage of pronunciation 
dictionary is that it provides error-free transcriptions. Its 
disadvantages are the potentially high memory use and that it 
is not able to predict the pronunciations for unseen words. 

The memory and computational resources for ASR and 
TTS applications implemented on embedded portable devices 
are inherently sparse. Though these resources are expected to 
increase in future portable devices, the number of applications 
required to run simultaneously is also very likely to increase. 
The memory use of pronunciation dictionaries is usually high, 
so an efficient compression method is needed. Our aim is to 

minimize the size of the pronunciation dictionaries while 
keeping the ASR and TTS performance unaffected. 

Generally, all kinds of well-known lossless text 
compression methods could be used for this purpose. In our 
particular task, however, the following requirements should 
also be taken into account. 
 
1. High efficiency; though the existing compression 

methods are good in general, their compression 
performance is not sufficient for pronunciation 
dictionaries. 

2. The algorithm should use limited run-time memory for 
decoding; 

 
In this paper, we propose a new procedure to efficiently 

compress pronunciation dictionaries by taking their special 
characteristics into account. First, we present a novel method 
to improve the grapheme-to-phoneme alignment in the 
dictionary. The aligned dictionary is then transformed to a 
lower entropy representation. Finally, a suitable lossless 
compression method is applied on the lower entropy 
dictionary, which uses a small amount of run-time memory for 
decoding. Though we have applied the presented dictionary 
compression to ASR and TTS tasks, it can be used for other 
purposes, such as dictionary transmission or storage. 

The paper is organized as follows. In the next section, the 
dictionary transform is outlined. In Section 3, the improved 
alignment approach is described. The general compression 
algorithms are briefly introduced in Section 4 followed by the 
experiments in Section 5. Finally, conclusions are drawn in 
Section 6. 

2. Dictionary transform 
Shannon established that there is a fundamental limit to 
lossless data compression, called the entropy denoted by H. 
The exact value of H depends on the information source, more 
specifically, on the statistical nature of the source. The best 
possible lossless compression rate is the entropy [3]. 

The entropy rate H in the general case is given by 
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where Bn represents the first n characters. It is virtually 
impossible to calculate the entropy directly according to the 
equation (1). The entropy H gives a theoretical lower bound 
for compression of a text source.  

Obviously, an efficient compression scheme should 
consider: 
 
1. Processing the text to have lower entropy; 
2. Using optimal compression scheme to asymptotically 

reach the entropy. 
 



The paper focuses on the processing of pronunciation 
dictionaries. For a given pronunciation dictionary, an original 
entry is represented in the following format (using TIMIT 
phoneme notations): 

"ada  ey d ax" 
All phonemes can be represented by single byte in the 

aligned dictionary, so all spaces in the phonetic sequence can 
be removed. For example, by mapping ey->p1, d->p2, ax->p3, 
we have 

"ada  p1p2p3" 
So the entry size is reduced from 11 to 7 bytes. For 

simplicity, the second-order entropy H2 is calculated as 
mentioned below. 

Let P(lj| li) be the conditional probability that the present 
character is the jth letter in the alphabet given that the previous 
character is the ith letter. The entropy H2 of the second order 
statistics is 
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where H2i is the entropy of a single letter li. 
The second-order entropy H2 is calculated from the 

original dictionary. We now have 
 

H2=3.81 bits/char 
 
Since the letter->phoneme pattern has higher correlation 

than consecutive letters, the redundancy is increased by 
interleaving the pronunciation phonemes and letter sequence 
of a given word. For instance, the above-mentioned entry is 
transformed as: 

"a p1 d p2 a p3", 
where italic and bold symbols stand for phonemes and the rest 
of the symbols represent letters. It is clear that the 
correspondence between the original and new formats is one-
to-one. By the representation transform of the dictionary, the 
second-order entropy is decreased to 

 
H2=3.17 bits/char 

 
It observed that the dictionary transform plays an 

important role to lower the entropy and to reach a high 
compression performance. The detailed analysis is given 
below. 

Assume that the alphabet and phoneme sizes are M and the 
maximum number of phonemes a single letter may map to is 
N. For a very large amount of data, we could ease analysis if 
assuming that it has statistically equal conditional probability 
that the present character is the jth letter given that the 
previous character is the ith letter. We have 

 
 P(lj| li)=1/M and M > N. (3) 

 
Suppose the entry is aligned. Section 3 introduces more 

details about alignment. Typical aligned pronunciation entry is 
written as: 

l1, l2, …, lm, p1, p2, …, pm 
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By entry transform, we have 
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So we have: 
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Taking equation (2) into account, 22 HH <
)

. Thus the 
entropy is decreased after entry transform. 

3. Improved dictionary alignment 
The entries in the dictionary must be aligned in order to 
transform the dictionary into lower entropy. The entries in the 
dictionary are composed of the letter sequence of words and 
their phonetic transcriptions. Take English language as 
example, a letter may correspond to zero, one, or two 
phonemes. The alignment is obtained by inserting graphemic 
or phonemic epsilons between the letters in the letter 
sequence, or between the phonemes in the phoneme sequence. 
The use of grapheme epsilons can be avoided by introducing a 
short list of pseudophonemes that are obtained by 
concatenating more phonemes that are known to correspond to 
a single letter, for example, "x->k s". In order to align the 
entries, the set of allowed phonemes has to be defined for each 
letter. The phoneme list includes the pseudophonemes for the 
letter and the possible phoneme epsilon. For a given letter-
phoneme pair, the penalties p(p|l) are initialized with zero if 
the phoneme p can be found in the list of allowed phonemes 
for the letter l, otherwise it is initialized with a large positive 
value. 

Given the initial penalty values, the dictionary is aligned in 
two steps [2]. In the first step, all the possible alignments are 
generated for each entry in the dictionary. Based on all the 
aligned entries, the penalty values are then re-scored. In the 
second step, only a single best alignment is found for each 
entry. 

entry state state 1 state 2 state 3 exit state

 
Figure 1. The grapheme HMM for aligning the 
phoneme sequence to the letters of the word. State 1-3 
corresponds to the letters of the word. 

For each entry, the optimal alignment is found with the 
Viterbi algorithm on the grapheme HMM shown in Figure 1. 
The grapheme HMM has an entry, an exit and letter states. 
The letters that may map to pseudophonemes are handled by 
having a duration state. The states 1 to 3 in Figure 1 are the 
states that correspond to the spelled letters in the word. State 2 
corresponds to a letter that may produce a pseudophoneme. 
The state skips from all the previous states to the current state 



are allowed in order to support phoneme epsilons. Each state 
and the duration state hold a token that contains the 
cumulative penalty of aligning the phoneme sequence against 
the grapheme HMM and the state sequences that correspond to 
the cumulative score. The phoneme sequence is aligned 
against letters by going through the phoneme sequence from 
the beginning to the end one phoneme at a time. Token 
passing is carried out in order to find the Viterbi alignment 
between the letters and the phonemes. The token that has the 
lowest cumulative penalty is found over all the states of the 
HMM. Based on the state sequence of the token, the alignment 
between the letters of the word and the phonemes can be 
determined. 

Obviously, large pronunciation dictionaries typically 
contain “outlier” entries characterized as following list: 
 
• Non-native names and words, like “Juan, Xiong, etc” 

may be included e.g. in an English pronunciation 
dictionary.  

• It is inevitable to have some wrong transcriptions in the 
dictionary due to typos and some other unpredictable 
reasons. They increase the inaccuracy of pronunciations. 

• Invalid alignments, for example “apple -> ae p ah l _”. By 
basic linguistic knowledge, we know that letter “p” never 
maps to vowel phoneme “ah”. This makes the grapheme-
to-phoneme pairs more irregular. 

 
All the cases listed above make the pronunciation more 

irregular, and irregular pronunciations decrease the 
compression efficiency and make the grapheme-to-phoneme 
mapping more inaccurate. If the above-mentioned problems 
are identified, the aligned pronunciation will be more regular 
leading to high compression efficiency and mapping accuracy. 
A new improved alignment algorithm is proposed in this paper 
to alleviate these problems. 

As described above, the final Viterbi alignment is done 
based on P(p,l) that is estimated from the aligned dictionary 
during the first step of the alignment algorithm. Obviously, the 
first step produces a very rough alignment, so P(p,l) is by no 
means very accurate. Another drawback is that a non-zero 
value is assigned to P(p,l) even in the case of linguistically 
impossible mappings. For example, P(“ah”,”p”) has a non-
zero value, but it is clearly against linguistic knowledge. In 
order to avoid this and to overcome the difficulties listed 
above, the following constraint is imposed on the Viterbi 
decoding.  

In the proposed alignment algorithm the alphabetic and 
phonetic sets need to be defined for the target language. Once 
the sets are defined, the list that specifies all the possible 
phonemes and pseudophonemes for each letter is created. This 
list includes truly language-dependent information. 

In the second step of the presented method, P(p,l) is 
estimated as usual if phoneme p can be found in the list of 
phonemes that are linguistically allowed for the letter l. If 
phoneme p can not be found in the list for a given letter l, then 
we apply the constraint to set P(p,l) to be the highest value 
without any re-estimation. In this way, we obtain the following 
benefits: 
 
• The aligned dictionary is in line with linguistic 

knowledge; incorrect entries can be identified. Therefore, 

the irregularity is reduced and alignment is improved in 
terms of accuracy. 

• The entries for foreign words/names can also be detected 
if they obey different pronunciation rules than targeted 
language. Obviously the irregularity is reduced too. 

• To some extent, wrong transcriptions are identified and 
corrected. 

• Since the entries containing undefined mapping pairs are 
clipped out, the defined mapping pairs having small 
probabilities can be correctly modeled (they are badly 
affected by the undefined mapping pairs in the original 
method.) 

• The linguistic information can be build up. By checking 
the entries that are clipped out, the linguistic information 
can be tuned, e.g. by defining new pseudophonemes, 
adding missing phonemes into letter-dependent phoneme 
set, etc. By having better linguistic information, the 
alignment can be improved correspondingly. 

 
The alignment procedure works for most of the entries. 

Some entries, however, may not be aligned. In such cases, 
forced alignment is applied. The grapheme or phoneme 
epsilons are added to the end of letter or phoneme sequences 
when a given entry is not aligned. 

4. Compression 
Broadly speaking, most of the lossless data compression 
methods in common use today fall into one of two categories 
[4]: dictionary-based or statistical methods. 

The dictionary-based compression methods are based on 
the observation that different types of data contain repeating 
code sequences. Good examples of such data are text files 
(code words represent characters) and raster images (code 
words represent pixels). These methods can be subdivided into 
two main groups. The methods of the first group try to find if 
the character sequence currently being compressed has already 
occurred in the input data. Then instead of repeating it, only a 
pointer to the earlier occurrence is used. The implicit 
dictionary here is represented by the previously processed 
data. All the methods of this group are based on the Lempel-
Ziv-77 (LZ77) algorithm. The algorithms of the second group 
create a dictionary of the phrases that occur in the input data. 
When they encounter a phrase already present in the 
dictionary, they just output the index number of the phrase in 
the dictionary. The refinement, which is the basis for the later 
methods, is called Lempel-Ziv-Welch (LZW). 

Arithmetic coding is a method of encoding data using a 
variable number of bits. The number of bits used to encode 
each symbol varies according to the probability assigned to 
that symbol. Low probability symbols use many bits, high 
probability symbols use fewer bits. So far, this makes 
arithmetic coding sound very similar to Huffman coding. 
However, there is an important difference. An arithmetic 
coding does not have to use an integral number of bits to 
encode a symbol. This means an arithmetic coding can usually 
encode a message using fewer bits than Huffman coding. 

The performance of arithmetic coding can further be 
improved by combining it with powerful statistical modeling 
techniques. The performance of these improved arithmetic 
compression schemes can, in some cases, come close to the 
Information theoretical lower bound. The disadvantage of 
these schemes is that they require an extensive amount of run-



time memory, especially when higher statistical order is used. 
Thus they are not applicable in handheld devices with limited 
memory resources. In the world of embedded systems, 
dictionary based data compression techniques are often chosen 
because they can operate using small decoding buffers. 

5. Experiments 
Firstly, the preliminary experiments, as shown in Table 1, 
compare the compression performances by applying LZW 
algorithm [5] on the dictionary pre-processed by different 
techniques. We have used a lookup table containing 2000 
English names and their pronunciations. The lookup table is 
compressed from the original 37.0 KB to 17.6 KB by applying 
the LZW algorithm directly, as baseline result. The size is 
further reduced to 12.0 KB on the transformed dictionary 
without using improved alignment. Finally proposed 
alignment can improve the compression to 10.9 KB as shown 
in Table 1. The compression rate is improved by 38% 
compared to the baseline performance. 
 

Methods Original LZW Interleaving Alignment 
Memory 37.0 17.6 12.0 10.9 

Table 1. Comparison of compression performance 
between different pre-processing schemes. 

The experiments are also carried out on the CMU English 
pronunciation dictionary [6] that contains 109,409 entries. The 
whole size of the dictionary is 2,580 KB. Both dictionary and 
statistical compression methods are tested. The compression 
algorithms in our experiment are LZ77, LZW and arithmetic 
coding with second order statistics. The baseline performance 
is evaluated on the original pronunciation dictionary directly. 
The compression methods are then applied to the transformed 
pronunciation dictionary denoted as low entropy dictionary. 
Table 2 shows that the proposed dictionary transform method 
performs well with all tested compression algorithms. In the 
table all figures are given in kilobytes (KB).  
 

Method Baseline Low-entropy Improvement 
LZ77 1181 940 20.4% 
LZW 1315 822 37.5% 

2nd order 
Arithmetic 899 501 44.3% 

Table 2. Comparison of compression performance 
among different lossless compression algorithms. 

As shown in Table 2, the proposed dictionary transform 
method can improve the compression rates with all well-
known compression algorithms. In the following, we compare 
the properties of the presented compression algorithms 
according to the following factors: 

 
 

1. Total memory usage including temporally used memory 
for decompression; 

2. Compression/Decompression speed; 
3. Compression rate. 

 
 

The LZW algorithm [5] decompresses in an on-line 
manner. It iteratively decompresses small piece of compressed 
data and stores into buffer, then reload and process next 
decompressed data until a given entry is found or the 

compressed data is completely decoded. This decoding buffer 
can be small. 

Table 3 shows the overall performance of three 
compression algorithms based on the factors listed above. 
LZW algorithm has the best decompression speed and a good 
decompression rate with the smallest memory requirement. All 
in all, the LZW algorithm fits the best our requirements. It 
improves the compression rate by 37.5%. 
 

Methods Compress rate Memory Speed 
LZ77 Low Smallest Medium 
LZW Medium Small Fast 

Arithmetic High Large Slow 

Table 3. Overall performance comparison among three 
typical compression algorithms. 

6. Conclusions 
In this paper we focused on the implementation aspects of 
low-memory pronunciation modeling for embedded devices. 
More specifically, we developed a novel procedure for 
compressing pronunciation dictionaries. 

The proposed method first transforms the dictionary to a 
lower entropy representation. Secondly, it reduces the 
variability in the aligned pronunciation dictionary to further 
reduce its entropy, and finally uses a generic lossless data 
compression method to obtain the compressed pronunciation 
lexicon. All steps involved are lossless, so the ASR or TTS 
performance is not affected by the compression. 

We have carried out experiments with US English names 
and words from the US English CMU dictionary. The 
proposed scheme achieved a 37.5% improvement over 
general-purpose lossless text compression. The presented 
method can also be applied to other languages as well as be 
combined with other lossless compression algorithms. 
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