
Efficient Compression Method for Pronunciation Dictionaries
Jilei Tian

Audio-Visual Systems Laboratory
Nokia Research Center, Tampere, Finland

jilei.tian@nokia.com

Abstract
Pronunciation dictionaries are often used with other data-
driven methods to model the pronunciations in phoneme-
based automatic speech recognition (ASR) and text-to-speech
(TTS) systems. The dictionaries usually take a great amount of
memory, which is a limiting factor in portable handheld
devices. Compressing the pronunciation dictionaries results in
minimal transmission bandwidth and less storage memory. In
this paper we present a new procedure to efficiently compress
pronunciation dictionaries. First, a novel method transforms
the dictionary to a lower entropy representation. Second, the
variability in the aligned pronunciation dictionary is reduced
to further lower its entropy. Finally, generic lossless
compression is applied on the transformed dictionary.
Experiments were carried out on English names and words
from US English CMU dictionary. The proposed scheme
achieved 37.5% improvement over general-purpose lossless
text compression.

1. Introduction
Pronunciation dictionaries are commonly used for language
learning, automatic speech recognition and speech synthesis.
Efficiently compressing the dictionary results in minimal
bandwidth usage and less memory required. This paper
focuses on the application of the compressed pronunciation
dictionary in phoneme-based ASR and TTS systems. Our
multilingual system, capable of handling dynamic
vocabularies, consists of several units [1]. At first, the
language identification module identifies the language of a
given word. Next, pronunciation modeling is applied in order
to obtain the phonetic transcription of the word. Finally, the
recognition model for the word is constructed by
concatenating multilingual acoustic monophone models
according to the phonetic transcription. The recognizer can
automatically cope with multilingual entries without any
assistance from the user. The phonemic transcription is also
used for TTS. Pronunciation modeling is of critical importance
in the system. The pronunciation models are language-
dependent. Different methods that can be applied are
pronunciation rules, pronunciation dictionaries and data-
driven approaches [2]. The advantage of pronunciation
dictionary is that it provides error-free transcriptions. Its
disadvantages are the potentially high memory use and that it
is not able to predict the pronunciations for unseen words.

The memory and computational resources for ASR and
TTS applications implemented on embedded portable devices
are inherently sparse. Though these resources are expected to
increase in future portable devices, the number of applications
required to run simultaneously is also very likely to increase.
The memory use of pronunciation dictionaries is usually high,
so an efficient compression method is needed. Our aim is to

minimize the size of the pronunciation dictionaries while
keeping the ASR and TTS performance unaffected.

Generally, all kinds of well-known lossless text
compression methods could be used for this purpose. In our
particular task, however, the following requirements should
also be taken into account.

1. High efficiency; though the existing compression

methods are good in general, their compression
performance is not sufficient for pronunciation
dictionaries.

2. The algorithm should use limited run-time memory for
decoding;

In this paper, we propose a new procedure to efficiently

compress pronunciation dictionaries by taking their special
characteristics into account. First, we present a novel method
to improve the grapheme-to-phoneme alignment in the
dictionary. The aligned dictionary is then transformed to a
lower entropy representation. Finally, a suitable lossless
compression method is applied on the lower entropy
dictionary, which uses a small amount of run-time memory for
decoding. Though we have applied the presented dictionary
compression to ASR and TTS tasks, it can be used for other
purposes, such as dictionary transmission or storage.

The paper is organized as follows. In the next section, the
dictionary transform is outlined. In Section 3, the improved
alignment approach is described. The general compression
algorithms are briefly introduced in Section 4 followed by the
experiments in Section 5. Finally, conclusions are drawn in
Section 6.

2. Dictionary transform
Shannon established that there is a fundamental limit to
lossless data compression, called the entropy denoted by H.
The exact value of H depends on the information source, more
specifically, on the statistical nature of the source. The best
possible lossless compression rate is the entropy [3].

The entropy rate H in the general case is given by

 ∑ ⋅−=
∞→

)(log)(1
2lim nn

n
BpBp

n
H , (1)

where Bn represents the first n characters. It is virtually
impossible to calculate the entropy directly according to the
equation (1). The entropy H gives a theoretical lower bound
for compression of a text source.

Obviously, an efficient compression scheme should
consider:

1. Processing the text to have lower entropy;
2. Using optimal compression scheme to asymptotically

reach the entropy.

The paper focuses on the processing of pronunciation
dictionaries. For a given pronunciation dictionary, an original
entry is represented in the following format (using TIMIT
phoneme notations):

"ada ey d ax"
All phonemes can be represented by single byte in the

aligned dictionary, so all spaces in the phonetic sequence can
be removed. For example, by mapping ey->p1, d->p2, ax->p3,
we have

"ada p1p2p3"
So the entry size is reduced from 11 to 7 bytes. For

simplicity, the second-order entropy H2 is calculated as
mentioned below.

Let P(lj| li) be the conditional probability that the present
character is the jth letter in the alphabet given that the previous
character is the ith letter. The entropy H2 of the second order
statistics is

)|(log)|(

)(

2
1

2

2
1

2

ij

m

j
iji

i

m

i
i

llPllPH

HlPH

∑

∑

=

=

⋅−=

⋅=

 (2)

where H2i is the entropy of a single letter li.
The second-order entropy H2 is calculated from the

original dictionary. We now have

H2=3.81 bits/char

Since the letter->phoneme pattern has higher correlation

than consecutive letters, the redundancy is increased by
interleaving the pronunciation phonemes and letter sequence
of a given word. For instance, the above-mentioned entry is
transformed as:

"a p1 d p2 a p3",
where italic and bold symbols stand for phonemes and the rest
of the symbols represent letters. It is clear that the
correspondence between the original and new formats is one-
to-one. By the representation transform of the dictionary, the
second-order entropy is decreased to

H2=3.17 bits/char

It observed that the dictionary transform plays an

important role to lower the entropy and to reach a high
compression performance. The detailed analysis is given
below.

Assume that the alphabet and phoneme sizes are M and the
maximum number of phonemes a single letter may map to is
N. For a very large amount of data, we could ease analysis if
assuming that it has statistically equal conditional probability
that the present character is the jth letter given that the
previous character is the ith letter. We have

 P(lj| li)=1/M and M > N. (3)

Suppose the entry is aligned. Section 3 introduces more

details about alignment. Typical aligned pronunciation entry is
written as:

l1, l2, …, lm, p1, p2, …, pm

)(log)|(log)|(22
1

2 MllPllPH ij

M

j
iji ≈⋅−= ∑

=
 (4)

By entry transform, we have

)(log)(

)|(log)|(

22

2
1

2

NHMax

lpPlpPH

i

ij

N

j
iji

=

⋅−= ∑
=

)

)

 (5)

So we have:

iii HMNHMaxH 22222)(log)(log)(≈<=≤
))

 (6)

Taking equation (2) into account, 22 HH <
)

. Thus the
entropy is decreased after entry transform.

3. Improved dictionary alignment
The entries in the dictionary must be aligned in order to
transform the dictionary into lower entropy. The entries in the
dictionary are composed of the letter sequence of words and
their phonetic transcriptions. Take English language as
example, a letter may correspond to zero, one, or two
phonemes. The alignment is obtained by inserting graphemic
or phonemic epsilons between the letters in the letter
sequence, or between the phonemes in the phoneme sequence.
The use of grapheme epsilons can be avoided by introducing a
short list of pseudophonemes that are obtained by
concatenating more phonemes that are known to correspond to
a single letter, for example, "x->k s". In order to align the
entries, the set of allowed phonemes has to be defined for each
letter. The phoneme list includes the pseudophonemes for the
letter and the possible phoneme epsilon. For a given letter-
phoneme pair, the penalties p(p|l) are initialized with zero if
the phoneme p can be found in the list of allowed phonemes
for the letter l, otherwise it is initialized with a large positive
value.

Given the initial penalty values, the dictionary is aligned in
two steps [2]. In the first step, all the possible alignments are
generated for each entry in the dictionary. Based on all the
aligned entries, the penalty values are then re-scored. In the
second step, only a single best alignment is found for each
entry.

entry state state 1 state 2 state 3 exit state

Figure 1. The grapheme HMM for aligning the
phoneme sequence to the letters of the word. State 1-3
corresponds to the letters of the word.

For each entry, the optimal alignment is found with the
Viterbi algorithm on the grapheme HMM shown in Figure 1.
The grapheme HMM has an entry, an exit and letter states.
The letters that may map to pseudophonemes are handled by
having a duration state. The states 1 to 3 in Figure 1 are the
states that correspond to the spelled letters in the word. State 2
corresponds to a letter that may produce a pseudophoneme.
The state skips from all the previous states to the current state

are allowed in order to support phoneme epsilons. Each state
and the duration state hold a token that contains the
cumulative penalty of aligning the phoneme sequence against
the grapheme HMM and the state sequences that correspond to
the cumulative score. The phoneme sequence is aligned
against letters by going through the phoneme sequence from
the beginning to the end one phoneme at a time. Token
passing is carried out in order to find the Viterbi alignment
between the letters and the phonemes. The token that has the
lowest cumulative penalty is found over all the states of the
HMM. Based on the state sequence of the token, the alignment
between the letters of the word and the phonemes can be
determined.

Obviously, large pronunciation dictionaries typically
contain “outlier” entries characterized as following list:

• Non-native names and words, like “Juan, Xiong, etc”

may be included e.g. in an English pronunciation
dictionary.

• It is inevitable to have some wrong transcriptions in the
dictionary due to typos and some other unpredictable
reasons. They increase the inaccuracy of pronunciations.

• Invalid alignments, for example “apple -> ae p ah l _”. By
basic linguistic knowledge, we know that letter “p” never
maps to vowel phoneme “ah”. This makes the grapheme-
to-phoneme pairs more irregular.

All the cases listed above make the pronunciation more

irregular, and irregular pronunciations decrease the
compression efficiency and make the grapheme-to-phoneme
mapping more inaccurate. If the above-mentioned problems
are identified, the aligned pronunciation will be more regular
leading to high compression efficiency and mapping accuracy.
A new improved alignment algorithm is proposed in this paper
to alleviate these problems.

As described above, the final Viterbi alignment is done
based on P(p,l) that is estimated from the aligned dictionary
during the first step of the alignment algorithm. Obviously, the
first step produces a very rough alignment, so P(p,l) is by no
means very accurate. Another drawback is that a non-zero
value is assigned to P(p,l) even in the case of linguistically
impossible mappings. For example, P(“ah”,”p”) has a non-
zero value, but it is clearly against linguistic knowledge. In
order to avoid this and to overcome the difficulties listed
above, the following constraint is imposed on the Viterbi
decoding.

In the proposed alignment algorithm the alphabetic and
phonetic sets need to be defined for the target language. Once
the sets are defined, the list that specifies all the possible
phonemes and pseudophonemes for each letter is created. This
list includes truly language-dependent information.

In the second step of the presented method, P(p,l) is
estimated as usual if phoneme p can be found in the list of
phonemes that are linguistically allowed for the letter l. If
phoneme p can not be found in the list for a given letter l, then
we apply the constraint to set P(p,l) to be the highest value
without any re-estimation. In this way, we obtain the following
benefits:

• The aligned dictionary is in line with linguistic

knowledge; incorrect entries can be identified. Therefore,

the irregularity is reduced and alignment is improved in
terms of accuracy.

• The entries for foreign words/names can also be detected
if they obey different pronunciation rules than targeted
language. Obviously the irregularity is reduced too.

• To some extent, wrong transcriptions are identified and
corrected.

• Since the entries containing undefined mapping pairs are
clipped out, the defined mapping pairs having small
probabilities can be correctly modeled (they are badly
affected by the undefined mapping pairs in the original
method.)

• The linguistic information can be build up. By checking
the entries that are clipped out, the linguistic information
can be tuned, e.g. by defining new pseudophonemes,
adding missing phonemes into letter-dependent phoneme
set, etc. By having better linguistic information, the
alignment can be improved correspondingly.

The alignment procedure works for most of the entries.

Some entries, however, may not be aligned. In such cases,
forced alignment is applied. The grapheme or phoneme
epsilons are added to the end of letter or phoneme sequences
when a given entry is not aligned.

4. Compression
Broadly speaking, most of the lossless data compression
methods in common use today fall into one of two categories
[4]: dictionary-based or statistical methods.

The dictionary-based compression methods are based on
the observation that different types of data contain repeating
code sequences. Good examples of such data are text files
(code words represent characters) and raster images (code
words represent pixels). These methods can be subdivided into
two main groups. The methods of the first group try to find if
the character sequence currently being compressed has already
occurred in the input data. Then instead of repeating it, only a
pointer to the earlier occurrence is used. The implicit
dictionary here is represented by the previously processed
data. All the methods of this group are based on the Lempel-
Ziv-77 (LZ77) algorithm. The algorithms of the second group
create a dictionary of the phrases that occur in the input data.
When they encounter a phrase already present in the
dictionary, they just output the index number of the phrase in
the dictionary. The refinement, which is the basis for the later
methods, is called Lempel-Ziv-Welch (LZW).

Arithmetic coding is a method of encoding data using a
variable number of bits. The number of bits used to encode
each symbol varies according to the probability assigned to
that symbol. Low probability symbols use many bits, high
probability symbols use fewer bits. So far, this makes
arithmetic coding sound very similar to Huffman coding.
However, there is an important difference. An arithmetic
coding does not have to use an integral number of bits to
encode a symbol. This means an arithmetic coding can usually
encode a message using fewer bits than Huffman coding.

The performance of arithmetic coding can further be
improved by combining it with powerful statistical modeling
techniques. The performance of these improved arithmetic
compression schemes can, in some cases, come close to the
Information theoretical lower bound. The disadvantage of
these schemes is that they require an extensive amount of run-

time memory, especially when higher statistical order is used.
Thus they are not applicable in handheld devices with limited
memory resources. In the world of embedded systems,
dictionary based data compression techniques are often chosen
because they can operate using small decoding buffers.

5. Experiments
Firstly, the preliminary experiments, as shown in Table 1,
compare the compression performances by applying LZW
algorithm [5] on the dictionary pre-processed by different
techniques. We have used a lookup table containing 2000
English names and their pronunciations. The lookup table is
compressed from the original 37.0 KB to 17.6 KB by applying
the LZW algorithm directly, as baseline result. The size is
further reduced to 12.0 KB on the transformed dictionary
without using improved alignment. Finally proposed
alignment can improve the compression to 10.9 KB as shown
in Table 1. The compression rate is improved by 38%
compared to the baseline performance.

Methods Original LZW Interleaving Alignment
Memory 37.0 17.6 12.0 10.9

Table 1. Comparison of compression performance
between different pre-processing schemes.

The experiments are also carried out on the CMU English
pronunciation dictionary [6] that contains 109,409 entries. The
whole size of the dictionary is 2,580 KB. Both dictionary and
statistical compression methods are tested. The compression
algorithms in our experiment are LZ77, LZW and arithmetic
coding with second order statistics. The baseline performance
is evaluated on the original pronunciation dictionary directly.
The compression methods are then applied to the transformed
pronunciation dictionary denoted as low entropy dictionary.
Table 2 shows that the proposed dictionary transform method
performs well with all tested compression algorithms. In the
table all figures are given in kilobytes (KB).

Method Baseline Low-entropy Improvement
LZ77 1181 940 20.4%
LZW 1315 822 37.5%

2nd order
Arithmetic 899 501 44.3%

Table 2. Comparison of compression performance
among different lossless compression algorithms.

As shown in Table 2, the proposed dictionary transform
method can improve the compression rates with all well-
known compression algorithms. In the following, we compare
the properties of the presented compression algorithms
according to the following factors:

1. Total memory usage including temporally used memory
for decompression;

2. Compression/Decompression speed;
3. Compression rate.

The LZW algorithm [5] decompresses in an on-line
manner. It iteratively decompresses small piece of compressed
data and stores into buffer, then reload and process next
decompressed data until a given entry is found or the

compressed data is completely decoded. This decoding buffer
can be small.

Table 3 shows the overall performance of three
compression algorithms based on the factors listed above.
LZW algorithm has the best decompression speed and a good
decompression rate with the smallest memory requirement. All
in all, the LZW algorithm fits the best our requirements. It
improves the compression rate by 37.5%.

Methods Compress rate Memory Speed
LZ77 Low Smallest Medium
LZW Medium Small Fast

Arithmetic High Large Slow

Table 3. Overall performance comparison among three
typical compression algorithms.

6. Conclusions
In this paper we focused on the implementation aspects of
low-memory pronunciation modeling for embedded devices.
More specifically, we developed a novel procedure for
compressing pronunciation dictionaries.

The proposed method first transforms the dictionary to a
lower entropy representation. Secondly, it reduces the
variability in the aligned pronunciation dictionary to further
reduce its entropy, and finally uses a generic lossless data
compression method to obtain the compressed pronunciation
lexicon. All steps involved are lossless, so the ASR or TTS
performance is not affected by the compression.

We have carried out experiments with US English names
and words from the US English CMU dictionary. The
proposed scheme achieved a 37.5% improvement over
general-purpose lossless text compression. The presented
method can also be applied to other languages as well as be
combined with other lossless compression algorithms.

7. References
[1] Viikki, O., Kiss, I. and Tian, J., "Speaker- and Language-

Independent Speech Recognition in Mobile
Communication Systems", in Proceedings of
International Conference on Acoustics, Speech and
Signal Processing, Salt Lake City, USA, 2001.

[2] Suontausta, J. and Häkkinen, J., "Decision Tree Based
Text-To-Phoneme Mapping for Speech Recognition", in
Proceedings of International Conference on Spoken
Language Processing, Beijing, China, 2000.

[3] Hankerson, D., Harris, G. and Johnson, P., Introduction
to Information Theory and Data Compression, CRC
Press, USA, 1998.

[4] Bell, T., Cleary, J. and Witten, I., Text Compression,
Prentice Hall Inc., New Jersey, USA, 1990.

[5] M. Nelson, "LZW Data Compression", Dr. Dobb's
Journal, October, 1989.

[6] http://www.speech.cs.cmu.edu/cgi-bin/cmudict: “The
CMU Pronouncing Dictionary”, Carnegie Mellon
University, US.

