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Abstract 
Voice conversion refers to the adaptation of the characteristics 
of a source speaker's voice to those of a target speaker. Gaussian 
mixture models (GMM) have been found to be efficient in the 
voice conversion task. The GMM parameters are estimated from 
a training set with the goal to minimize the mean squared error 
(MSE) between the transformed and target vectors. Obviously, 
the quality of the GMM model plays an important role in 
achieving better voice conversion quality. This paper presents a 
very efficient approach for the evaluation of GMM models 
directly from the model parameters without using any test data, 
facilitating the improvement of the transformation performance 
especially in the case of embedded implementations. Though 
the proposed approach can be used in any application that 
utilizes GMM based transformation, we take voice conversion 
as an example application throughout the paper. The proposed 
approach is experimented with in this context and evaluated 
against an MSE based evaluation method. The results show that 
the proposed method is in line with all subjective observations 
and MSE results. 

1. Introduction 
Voice conversion technology enables to transform one speaker's 
speech pattern into another speaker’s pattern with distinct 
characteristics, giving it a new identity, while preserving the 
original content or meaning. Speech and signal processing 
techniques are used for the modification of the speech of a 
source speaker to sound as if it was spoken by a target speaker. 
Though commercial usage of voice conversion techniques has 
not been very popular yet, the interest has risen immensely over 
the last few years. One of the reasons is the attractive idea to 
use voice conversion in cost-effective individualization of text-
to-speech (TTS) systems. Without voice conversion, new voices 
have to be created in a time-consuming and expensive way 
using extensive recordings and manual annotations. Voice 
conversion can be also used to make a synthetic voice speak in 
languages that the original voice talent cannot speak. Other 
applications for voice conversion include security related usage 
to hide the identity of the speaker and entertainment 
applications, etc. 

The research on voice conversion has received an increasing 
amount of attention, and the different voice conversion 
approaches have been proposed in the literature. From the 
technical point of view, typical approaches presented in the 
literature include Gaussian mixture modeling (GMM) based 
conversion [2], neural network based conversion [6], hidden 
Markov model (HMM) based conversion [3], linear 
transformation based conversion [7], and codebook based 

conversion. Among those techniques, the vast majority of the 
current voice conversion systems focus on data-driven GMM-
based transformation on the spectral aspects of conversion, 
including instantaneous pitch. We have also used the GMM 
based approach in a parametric framework that also allows very 
efficient speech compression. 

Research results found in the literature have shown that the 
GMM based approach can be used successfully in voice 
conversion. In the GMM based transformation, the combination 
of source and target vectors is used to estimate the GMM 
parameters for the joint density. The GMM-based conversion 
function is used to minimize the mean squared error between 
the transformed and target vectors. Apparently, the quality of 
the trained GMM has a tremendous influence on the 
performance. Therefore, efficient objective evaluation of GMM 
models is becoming very important when going towards a better 
conversion quality. 

The existing conventional objective approaches for GMM 
quality evaluation based on distance measures such as mean 
squared error require test or validation data and are rather heavy 
from the viewpoint of embedded implementations, which may 
prevent such quality evaluations in embedded applications. 
These kinds of approaches have several inherent drawbacks: 
1. Memory and cost: need to obtain and store the validation 

data; 
2. Consistency: test results are dependent on the selection of 

the test data, different results may be achieved using 
different validation sets; 

3. Real-time feedback: difficult to integrate this kind of 
measurement into the model training process; 

4. Complexity: computational load caused by the evaluation is 
rather high; 

Thus more efficient objective GMM evaluation schemes that 
could avoid these problems should be investigated 

The approach presented in this paper introduces a very 
efficient approach for objectively evaluating GMM quality that 
is readily suitable also for embedded implementations. The 
main idea in the proposed approach is to measure the quality of 
the model directly from the model parameters without using any 
test data. The approach makes it possible to generate better 
GMM models especially in practical embedded applications.  

The paper is organized as follows. In the next section, the 
target application using the GMM based transformation 
approach is introduced. In Section 3, the efficient approach for 
the evaluation of GMM models is presented. Then, the 
promising experimental results are given and analyzed in 
Section 4. Finally, the conclusions are drawn in Section 5. 



2. GMM based voice conversion system 
In GMM based transformation, multiple mixtures of Gaussian 
distributions are trained using joint aligned feature vectors 
combined from source and target. As an example application 
that uses this technique, we introduce our voice conversion 
system very briefly in this section. The introduction covers the 
three main areas: feature extraction, alignment and GMM 
training. 

2.1. Feature extraction 
The features presented in this paper are based on a parametric 
speech model inspired by the successful usage of a similar 
model in a low-bit-rate speech coding application [5]. The 
parametric model contains favorable properties from the 
viewpoint of both voice conversion and speech coding, and 
allows a seamless combination of these two aspects. 

The speech model is based on the fact that a speech signal, 
or alternatively a vocal tract excitation signal, can be 
represented as a sum of sine waves of arbitrary amplitudes, 
frequencies and phases. To facilitate both voice conversion and 
speech coding, a simplified sinusoidal model parameterized 
using the pitch, the voicing, the residual amplitude spectrum, 
and voicing information for the spectrum, is applied to the 
modeling of the vocal tract excitation signal. 

The excitation signal is obtained using the well-known 
linear prediction approach. The line spectral frequency (LSF) 
representation of speech is extracted as vocal tract features. 
From the viewpoint of voice conversion, this widely-used 
representation is very convenient since it has a close relation to 
formant locations and bandwidths, and it offers favorable 
properties for different types of processing and guarantees the 
filter stability.  

2.2. Alignment 
The training of the GMM models utilizes aligned parametric 
data from the source and target voices. The alignment is 
achieved in two steps. First, both the source and target speech 
signals are segmented and then a finer-level alignment is 
performed within each segment. The segmentation is performed 
at phoneme-level using HMM models. It is also possible to 
utilize manually labeled phoneme boundaries if such 
information is available but this is not used as the only solution 
to avoid the requirement for any manual processing that would 
be time-consuming and prone to human errors. 

In principle, the speech segmentation could be conducted 
using very simple techniques, for example by measuring 
spectral change without taking into account knowledge about 
the underlying phoneme sequence. However, to achieve better 
performance, we fully exploit the information about the 
phonetic content and perform the segmentation using HMM 
models. At first a sequence of feature vectors is extracted from 
the speech signal frame by frame. The phoneme sequence 
associated with the corresponding speech is assumed known. 
Given the phoneme sequence, a compound HMM model is built 
up by sequentially concatenating the phoneme HMM models. 
Next, the frame-based feature vectors are associated with the 
states of the compound HMM model using Viterbi search to 
find the best path. By keeping track of the states, a backtracking 
procedure is able to decode the maximum likelihood state 

sequence [4]. The phoneme boundaries in time are then 
recovered by following the transition change from one phoneme 
HMM to another. 

The phoneme-level alignment obtained using the procedure 
above is further refined by performing frame-level alignment 
using dynamic time warping (DTW) [4]. DTW can be used for 
finding the best alignment between two acoustic patterns. This 
is functionally equivalent to finding the best path in a grid to 
map the acoustic features of one pattern to those of the other 
pattern. Finding the best path requires solving a minimization 
problem that minimizes the dissimilarity between the two 
speech patterns. In the paper, DTW is applied on Bark-scaled 
LSF vectors and the algorithm is constrained to operate within 
one phoneme segment at a time. Non-simultaneous silent 
segments are disregarded. 

2.3. GMM training 

The combination of aligned source and target vectors z=[xT yT]T 
can be used to train a GMM based conversion models [1][2]. In 
the training, we have used the popular approach that makes use 
of the aligned data z to estimate the GMM parameters of the 
joint distribution p(x,y), where x and y correspond to source and 
target feature vectors, respectively. This is accomplished 
iteratively through the well-known Expectation Maximization 
(EM) algorithm. 

The PDF of a GMM distributed random variable z can be 
estimated from a sequence of z samples [z1 z2 … zt … zp] 
provided the dataset is sufficient by means of EM algorithms. In 
the particular case when z=[xT yT]T is a joint variable the 
distribution of z can serve for probabilistic mapping between the 
two variables. In the case of voice conversion x and y are the 
corresponding features from the source and target speaker, 
respectively. 

The distribution of z is modeled by GMM as 
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N(z, µl, Σl) denotes Gaussian distribution with the mean µl and 
the covariance matrix Σl. The parameters of GMM can be 
estimated using the well-known EM algorithm. 

For the actual transformation, what is desired is a function 
F(.) such that the transformed F(xt) best matches the target yt 
for all the data in the training set. The conversion function [1] 
that converts source feature xt to target feature yt is given by 
Equation (2). 
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The weighting terms in Equation (2) are chosen to be the 
conditional probabilities that the feature vector xt belongs to the 
different components, as shown in Equation (3). 
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3. GMM model evaluation 
The main idea presented in this paper is to evaluate the quality 
of the GMM model directly based on the model parameters 
without using any testing data. More precisely, the measure 
utilizes the trace of target parts of the covariance matrices in the 
transform function to approximately evaluate the performance 
of GMM model in the transformation task. The proposed 
measure is very efficient to compute and it does not require any 
test data as the measurement is done directly from the model 
itself. 

The evaluation method is derived by considering the 
properties of the GMM based transformation approach. The 
objective in the optimization of the GMM parameters in the 
conversion function is to minimize the average squared 
conversion error (D) for the training dataset. 
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The mean squared error is usually computed also on a validation 
dataset to assess the GMM quality. Lower D scores indicate that 
trained GMM models perform better in the voice conversion 
task than the model having larger D. Another approach for 
estimating the conversion error can be derived from data 
statistics (i.e., model parameters) using the variance of the 
distribution of y given x, i.e. )|var()( xyx =ε . ε(x) can be 
treated as a measure of the uncertainty of the conversion. The 
smaller ε(x) is, the more accurate the conversion performs. The 
proposed method originates from equation (4) and can be 
applied as an efficient measure for model assessment. 

In theory the quality of the GMM can be measured using: 
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To be able to estimate the quality from the model itself in 
practice, the different mixtures have to be taken into account in 
the computation. Moreover, to make the computational 
complexity lower, the following approximation is proposed, 
instead. 
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where tr(.) denotes the trace of the matrix and wl is the weight 
for the lth component. The value Q, also called trace measure 
and defined in Equation (5)-(6), is proposed to be used for 
evaluation of GMM performance. 

We have applied the GMM on the features in discrete cosine 
transform (DCT) domain. The decorrelation tendency of DCT-
ed features ensures almost diagonal covariance matrix. In this 
way the trace can better approximate the variance of the data in 
multiple dimensions. Therefore equation (6) becomes more 
accurate. The GMM model performs better when Q value 
decreases. The proposed measure can be computed very 
efficiently and the measurement can be done directly on the 
model itself without any validation data. This measure can be 
used, for example of guiding the training of the transformation 
system towards better modeling. As very efficient 
implementations can be designed for the proposed scheme, it is 
particularly suitable for embedded applications. Nevertheless, 
the technique still has benefits in other applications as well, as 

there is no need to have any evaluation data and the results are 
always consistent. 

4. Experiments 
In order to verify the theoretical reasoning described in the 
Section 3, we carried out some experiments using voice 
conversion data. In these experiments, pitch and LSF 
parameters were studied mainly because of their importance in 
speech perception. Parallel utterances for two speakers were 
used for training (90 sentences) and testing (99 sentences). The 
models were trained on combined 20 dimensions LSFs and two 
dimensions pitch features from source and target speakers using 
the EM algorithm, respectively. 

4.1. Trace measure vs. number of mixtures 
A preliminary test was firstly carried out to verify that the 
proposed measure can meaningfully evaluate different models 
having different number of mixtures. Perceptual observations 
have indicated that the suitable number of mixtures for the 
conversion of LSFs and pitch features is 16 and 8, respectively, 
giving the best tradeoff between conversion quality and 
computational load. The trace measures for the corresponding 
models with different number of mixtures (as seen in Figure 1 
and Figure 2) are completely in line with perceptual 
observations. 

 

 
Figure 1. Trace measures vs. number of mixtures (LSF). 

 
Figure 2. Trace measure vs. number of mixtures (pitch). 

4.2. Comparison between trace and MSE 
The second experiment included comparative tests between the 
trace measure and the conventional MSE approach. Again, the 
evaluation included pitch and LSF parameters. The training was 



done on normalized data. Put more specifically, the features 
were first normalized using scaling. DCT transform is applied to 
decorrelate the features. The conversion requires now 
normalization, DCT transform, mapping through GMM, inverse 
DCT transform and denormalization. It should be noted that the 
models were trained only on the training set, while both training 
and testing set were converted and analyzed separately for 
calculating MSE. Separate models were trained for the different 
directions of the conversion (from male to female and from 
female to male). GMM models are also trained on the voiced 
and unvoiced data, as denoted as model 1 and model 2. The 
converted data was compared to the target data in terms of 
MSE. The results from this experiment are given in Table 1: 
 

Table 1. GMM models evaluated using MSE. 

 GMM 
models 

Female to 
Male 

Male to 
Female 

Pitch (voiced) 212 95 
LSF model 1 17438 16515 

Test 
set 

LSF model 2 18213 16931 
Pitch (voiced) 224 91 
LSF model 1 17199 16234 

Train 
set 

LSF model 2 18050 17054 
 
The trace measures of the same models are given in Table 2. 
They were computed using Equation (6). 
 

Table 2. GMM models evaluated using trace measure. 

GMM models Female to Male Male to Female 
Pitch (voiced) 0.785 0.473 
LSF model 1 4.764 4.609 
LSF model 2 5.029 4.886 

 
As can be seen, the MSE and trace measures are completely in 
line with each other for both the training and validation sets. 
Moreover, the proposed measure can again also confirm our 
perceptual findings on our voice conversion data: male-to-
female conversion has better quality (smaller errors) than 
female-to-male conversion, and LSF model 1 outperforms LSF 
model 2. 

5. Conclusions 
In this paper, we focused on the model evaluation aspects in the 
context of Gaussian mixture modeling based transformation. 
More specifically, we developed a novel procedure for efficient 
evaluation of the GMM models without using any evaluation 
data. The proposed approach was experimented in the voice 
conversion task. 

It is remarkable that the proposed trace measure is perfectly 
in line both with perceptual observations and MSE results (for 
both the training and validation sets). The use of the presented 
measure leads to the same conclusions with significantly less 
computation and without any validation data or perceptual 
evaluation. Thus, based on the presented practical experiments, 

the proposed trace measure can be regarded as an effective and 
efficient quality measure of the GMM model in transformation 
task. 

The proposed GMM evaluation scheme offers several 
advantages when compared to the conventional MSF based 
evaluation technique: 
1. Efficiency: very fast computation; 
2. Simplicity: no validation/testing data needed for the 

evaluation;  
3. Consistency: MSE results depend on the test data, but the 

trace measure always gives the same result provided the 
GMM is kept unchanged; 

4. Easy integration: it is easy to integrate the analytical 
evaluation as a feedback into the model training, aiming to 
improve the models; 

Consequently, it can be concluded that the proposed approach 
offers a very good solution for the evaluation of GMM model in 
the transformation applications. The method offers benefits in 
all implemented platforms, especially strong in embedded 
applications. 
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