Published in International Joint Conference on Neural Networks, pages 3059-3062, 2004

Efficient Training of Large Neural Networks
for Language Modeling

Holger Schwenk
LIMSI - CNRS
bat 508, BP 133, 91403 Orsay cedex, FRANCE
E-mail: schwenk@Ilimsi.fr

Abstract— Recently there has been increasing interest in using
neural networks for language modeling. In contrast to the well
known backoff n-gram language models, the neural network ap-
proach tries to limit the data sparseness problem by performing
the estimation in a continuous space, allowing by this means
smooth interpolations. The complexity to train such a model and
to calculate one n-gram probability is however several orders of
magnitude higher than for the backoff models, making the new
approach difficult to use in real applications.

In this paper several techniques are presented that allow the
use of a neural network language model in a large vocabulary
speech recognition system, in particular very fast lattice rescoring
and efficient training of large neural networks on training
corpora of over 10 million words. The described approach
achieves significant word error reductions with respect to a
carefully tuned 4-gram backoff language model in a state of
the art conversational speech recognizer for the DARPA rich
transcriptions evaluations.

I. INTRODUCTION

Language modeling is known to be a very important aspect
of speech recognition. The most prominent approach, at least
in state-of-the-art large vocabulary continuous speech recogni-
tion (LVCSR) systems, uses statistical language models based
on n-grams, i.e. the model predicts the following word based
on the previous n—1 words, ignoring all other context:

P(wj = i\wj_n_H, .y W, wl)

~ P(wj = i|wj_py1, ., wj—2,wj—1) 1)

Due to data sparseness and computational complexity during
speech decoding, n is usually limited to three or four words.
Although these statistical language models (LM) perform quite
well in practice, there are several drawbacks from a theoretical
point of view due to the high dimensionality in the discrete
space representation of the words. The vocabulary size in most
current LVCSR systems is at least 64k words, which means
that many of the (64k)3 trigrams and (64k)* 4-grams are never
observed during training.

“True generalization” is difficult to obtain in a discrete word
indice space, since there is no obvious relation between the
word indices. The probability distributions are not smooth
functions since any change of the word indices can result in an
arbitrary change of the LM probability. Various techniques for
generalization to new word sequences have been proposed, in
particular backing-off and smoothing. These approaches rely

on the utilization of probabilities available for shorter contexts.
Another approach is to use word classes in order to improve
generalization (see for instance [1] for an overview).

Recently, a new approach has been developed that proposes
to carry out the estimation task in a continuous space [2], [3].
The basic idea is to project the word indices onto a continuous
space and to use a probability estimator operating on this
space. Since the resulting probability functions are smooth
functions of the word representation, better generalization to
unknown n-grams can be expected. A neural network can be
used to simultaneously learn the projection of the words onto
the continuous space and the n-gram probability estimation.
This connectionist LM has been evaluated on two text cor-
pora (“Brown”: 800K training words, English textbooks; and
“Hansard”: 32M words, Canadian Parliament proceedings) and
achieved perplexity improvements of up to 30% with respect
to a standard trigram [2].

The first evaluation of such an approach in a conversational
speech recognizer demonstrated that it can be used to reduce
the word error [4]. These results were later confirmed with
an improved speech recognizer [5]. A neural network LM has
also been used with a Syntactical Language Model yielding
perplexity and word error improvements on the Wallstreet
Journal corpus [6]. In this paper we present new algorithms
for fast training and recognition of the neural network LM
and discuss convergence properties. Results are presented
for a conversational speech recognizer that achieved state-of-
the-art performance in the last two NIST rich transcription
evaluations.

The remainder of this paper is organized as follows. The
next two sections present the basic architecture of the neural
network language model and the baseline speech recognizer.
Section 1V and V describe how to achieve fast recognition and
fast training with this approach, providing comparative results.

Il. ARCHITECTURE OF THE NEURAL NETWORK LM

The architecture of the neural network n-gram LM is
shown in Figure 1. A standard fully-connected multi-layer
perceptron is used. The inputs to the neural network are
the indices of the n—1 previous words in the vocabulary
hj = wj_pt1,...,wj—2, w;—1 and the outputs are the posterior
probabilities of all words of the vocabulary:

Neural Network

|y pi=

LM probabilities
for all words

discrete continuous
representation: representation:
indicesin wordlist P dimensional vectors

Fig. 1. Architecture of the neural network language model. h; denotes the
context w; _p41,...,w;—1. P is the size of one projection and H and N is
the size of the hidden and output layer respectively. When shortlists are used
the size of the output layer is much smaller then the size of the vocabulary.

where N is the size of the vocabulary. This can be contrasted
with standard language modeling where each n-gram proba-
bility is calculated independently. The input uses the so-called
1-of-n coding, i.e., the i-th word of the vocabulary is coded
by setting the i-th element of the vector to 1 and all the
other elements to 0. This coding substantially simplifies the
calculation of the projection layer since only the i-th line of
the N x P dimensional projection matrix needs to be copied,
where N is the size of the vocabulary and P the size of the
projection.

Let ¢, denote these projections, d; the hidden layer ac-
tivities, o; the outputs, p; their softmax normalization, 1y,
bj, vi; and k; the hidden and output layer weights and the
corresponding biases. Using matrix/vector notation the neural
network performs the following operations:

= tanh(M=x*c+b) 3

o = Vxd+k 4)
N

p = explo)/ Y e ©)
k=1

where lower case bold letters denote vectors and upper case
bold letter denote matrices. The tanh- and exp-function as
well as the division are performed element wise. The value
of the output neuron p; corresponds directly to the probability
P(w; =1i|h;). Training is performed with the standard back-
propagation algorithm using cross-entropy as error function,
and a weight decay regularization term. The targets are set
to 1.0 for the next word in the training sentence and to 0.0
for all the other ones. It can be shown that the outputs of a
neural network trained in this manner converge to the posterior
probabilities. Therefore, the neural network minimizes directly
the perplexity on the training data. Note also that the gradient
is back-propagated through the projection-layer, which means

that the neural network learns the projection of the words onto
the continuous space that is best for the probability estimation
task. The complexity of calculating the probability P(w;|h;)
of only one n-gram is given by the following equation?:

(n—1)PxH)+H+(HxN)+N (6)

Since N is usually much larger than H, the complexity is
dominated by the calculation at the output layer. For usual
values of n=4, N=51k, P=50 and H=300, about 15 million
floating point operations are needed to calculate one LM
probability, which is computationally very expensive for full
decoding or lattice rescoring. Note that due to the softmax
normalization, all of the output activities need to be calculated
even if only one probability is needed. The following section
describes the baseline speech recognizer, followed by a de-
tailed discussion how to achieve fast recognition and training
with the neural network language model.

I1l. BASELINE SPEECH RECOGNIZER

In this paper the neural network language model is evaluated
within a state of the art speech recognizer for conversational
telephone speech (CTS). This task is known to be significantly
more difficult than the recognition of Wallstreet journal or
of broadcast news (BN) data. Based on the NIST speech
recognition benchmarks [7], current best BN transcription
systems achieve word error rates that approach 10% in 10xRT
while the word error rate for the DARPA conversational
telephone speech recognition task is about 23% using more
computational resources (20—-100xRT). A large amount of this
difference can of course be attributed to the difficulties in
acoustic modeling, but language modeling of conversational
speech also faces problems that are much less important in
BN data such as unconstrained speaking style, frequent gram-
matical errors, hesitations, restarts, etc. In addition, language
modeling for conversational speech suffers from an extreme
lack of adequate training data since the main data source is
audio transcriptions, in contrast to the BN task for which
other news sources are readily available. If we consider for
instance the DARPA Switchboard (SWB) task, there are only
about 12.4M words of transcriptions corresponding to the 860h
of available transcribed acoustic training data. Unfortunately,
collecting large amounts of conversational LM data is very
costly. One possibility is to increase the amount of training
data by selecting conversational like sentences in BN material
and on the Internet, or by transforming other sources to be
more conversational-like, see for instance [8], [9]. In this
paper, we show that the neural network LM makes better use of
the limited amount of data than conventional backoff n-gram
models. Results are reported on the official test sets of the last
three NIST CTS evaluations.

The LIMSI conversational speech recognizer is derived from
the LIMSI broadcast news transcription system [9]. The word
recognizer uses continuous density HMMs with Gaussian

1The activities of the projection layer are obtained by a simple table look-up
and can be neglected in the complexity analysis.

Fig. 2.

Example of a lattice produced by the speech recognizer. A lattice is a graph of possible solutions where each edge corresponds to a hypothesized

word with its acoustic and language model scores (for clarity these scores are not shown in the figure). [from Gauvain and Lamel, ”Large Vocabulary Speech
Recognition Based on Statistical Methods”, in Pattern Recognition in Speech and Language Processing, CRC Press, 2003]

mixture for acoustic modeling and n-gram statistics estimated
on large text corpora for language modeling. Each context-
dependent phone model is a tied-state left-to-right CD-HMM
with Gaussian mixture observation densities where the tied
states are obtained by means of a decision tree. The acous-
tic feature vector has 39-components including 12 cepstrum
coefficients and the log energy, along with their first and
second derivatives. Cepstral mean and variance normalization
are carried out on each conversation side. The acoustic models
are MMIE trained on a total of about 860 hours of data.

Decoding is carried out in 4 passes. In the first pass
the speaker gender for each conversation side is identified
using Gaussian mixture models, and a fast trigram decode
is performed to generate approximate transcriptions. These
transcriptions are only used to compute the VTLN warp factors
for each conversation side. All of the following passes make
use of the VTLN-warped data. Each subsequent decoding pass
generates a bigram word lattice per speaker turn which is
expanded with the 4-gram baseline backoff LM and converted
into a confusion network with posterior probabilities (see
Figure 2 for an example of a lattice). The best hypothesis
in the confusion network is used in the next decoding pass
for unsupervised MLLR adaptation of the acoustic models.
Two regression classes are used in the third pass, whereas five
phonemic regression classes are used for the fourth pass. The
overall run time is about 20xRT.

LM training

The main source for training a LM for conversational speech
are transcriptions of the audio training corpora. In addition to
this corpus of 12.4M words, the following texts have been
used to train the 4-gram backoff LM:

o 240M words of commercially produced BN transcripts,

« 80M words of CNN television BN transcriptions,

o 180M words of conversational like data collected from
the Internet.?

2This data has been provided by the University of Washington

Adding other sources, in particular newspaper text, was not
useful. The baseline language model is constructed as follows:
Separate backoff n-gram LMs are estimated on each of the
above corpora using the modified version of Kneser-Ney
smoothing as implemented in the SRI LM toolkit [10]. The
LM vocabulary contains 51077 words. A single backoff LM
is built by merging these models, estimating the interpolation
coefficients with an EM procedure. The resulting LM has 20M
bigrams, 31M trigrams and 24M 4-grams. This interpolated
model is our baseline 4-gram LM. The perplexity on the
EvalO1 test data is 56.3 and the word error rate is 21.5%.

IV. FAST RECOGNITION

Language models play an important role during decoding
of continuous speech since the information provided about
the most probable set of words given the current context is
used to limit the exponential search space. Using the neural
4-gram LM directly during decoding imposes an important
burden on search space organization since a context of three
words must be kept. This lead to long decoding times in our
first experiments when the neural LM was used directly during
decoding [4]. In order to make the model tractable for LVCSR
the following techniques have been applied:

1) Lattice rescoring: decoding is done with a standard
backoff LM and a lattice is generated. The neural
network LM is then used to rescore the lattice.

2) Shortlists: the neural network is only used to predict the
LM probabilities of a subset of the whole vocabulary.

3) Regrouping: all LM probability requests in one lattice
are collected and sorted. By these means all LM prob-
ability requests with the same context h; lead to only
one forward pass through the neural network.

4) Block mode: several examples are propagated at once
through the neural network, allowing the use of faster
matrix/matrix operations.

5) CPU optimization: machine specific libraries BLAS are
used for fast matrix and vector operations.

It has been demonstrated in Section Il that most calculations

are done due to the large size of the output layer. Remember

that all outputs need to be calculated in order to perform the
softmax normalization even though only one LM probability is
needed. Experiments using lattice rescoring with unnormalized
LM scores led to much higher word error rates. One may argue
that it is not very reasonable to spend a lot of time to get
the LM probabilities of words that do not appear very often.
Therefore, we chose to limit the output of the neural network
to the s most frequent words, s < N, referred to as a shortlist
in the following discussion. All words of the word list are
still considered at the input of the neural network. The LM
probabilities of words in the shortlist (Py) are calculated by
the neural network and the LM probabilities of the remaining
words (Ppg) are obtained from a standard 4-gram backoff LM:

v _ [Pn(wjlhy) - Ps(hy) if w; € shortlist
P(w]|h]) o {PB(U}]VL]) else

Ps(hj) = > Pg(w|hy) 8

weshortlist(hy)

U]

It can be considered that the neural network redistributes the
probability mass of all the words in the shortlist.® This prob-
ability mass is precalculated and stored in the data structures
of the standard 4-gram LM. A backoff technique is used if the
probability mass for a requested input context is not directly
available. Table | gives the coverage, i.e. the percentage of
LM probabilities that are effectively calculated by the neural
network when evaluating the perplexity on a development set
of 56k words or when rescoring lattices.

TABLE |
COVERAGE FOR DIFFERENT SHORTLIST SIZES, I.E. PERCENTAGE OF
4-GRAMS THAT ARE ACTUALLY CALCULATED BY THE NEURAL LM

shortlist size 1024 2000 4096 8192
Eval0l | 89.3% | 93.6% | 96.8% | 98.5%
lattice | 88.5% | 89.9% | 90.4% | 91.0%

During lattice rescoring LM probabilities with the same con-
text h; are often requested several times on potentially differ-
ent nodes in the lattice (for instance the trigram WAS A GOOD
in the lattice shown in figure 2). Collecting and regrouping
all these calls prevents multiple forward passes since all LM
predictions for the same context are immediately available (see
Eqn. 2). Further improvements can be obtained by propagating
several examples at once though the network, also know as
bunch mode [11]. This results in using matrix/matrix instead
of matrix/vector operations:

D = tanh(M=xC+B) 9)
O = VxD+K (10)
where B and K are obtained by duplicating the bias b and k

repectiveley for each line of the matrix. These matrix/matrix
operations can be aggressively optimized on current CPU

SNote that the sum of the probabilities of the words in the shortlist for a

given context is normalized 3= < p,ors1isc P (w|hy) = 1.

architectures, e.g. using SSE2 instructions for Intel proces-
sors [12], [13]. Although the number of floating point oper-
ations to be performed is strictly identical to single example
mode, an up to five times faster execution can be observed in
function of the sizes of the matrices.

The Eval01 test set consists of 6h of speech comprised of
5895 conversations sides. The lattices generated by the speech
recognizer for this test set contain on average 511 nodes and
1481 arcs per conversation side. In total 3.8 million 4-gram
LM probabilities were requested out of which 3.4 million
(89.9%) have been processed by the neural network, i.e. the
to be predicted word is among the 2000 most frequent words.
After collecting and regrouping all LM calls in each lattice,
only 1 million forward passes though the neural network have
been performed, giving a cache hit rate of about 70%. Using a
bunch size of 128 examples, the total processing time took less
than 9 minutes on a Intel Xeon 2.8GHz processor, e.g. in 0.03
times real time. This corresponds to about 1.7 billion floating
point operations per second (1.7 GFlops). Lattice rescoring
without bunch mode and regrouping of all calls in one lattice
is about ten times slower.

V. FAST TRAINING

Language models are usually trained on text corpora of
several million words. With a vocabulary size of 51k words,
standard back-propagation training would take several weeks.
Parallel implementations [3] and resampling techniques [14]
that result in important speedups have been proposed. Parallel
stochastic back-propagation of neural networks needs connec-
tions between the processors with very low latency, which are
very costly. Optimized floating point operations are much more
efficient if they are applied to data that is stored in continuous
locations in memory, making a better use of cache and data
prefetch capabilities of processors. This is not the case for
resampling techniques. Therefore, a fixed size output layer
was used and the words in the shortlist were rearranged in
order to occupy continuous locations in memory.

In our initial implementation we used standard stochastic
backpropagation and double precision for the floating point
operations in order to ensure good convergence. Despite
careful coding and optimized BLAS libraries [12], [13] for the
matrix/vector operations, one epoch through a training corpus
of 12.4M examples took about 47 hours on a Pentium Xeon
2.8 GHz processor. This time was reduced by more than a
factor of 30 using:

« Floating point precision (1.5 times faster). Only a slight
decrease in performance was observed due to the lower
precision.

« Suppression of intermediate calculations when updating
the weights (1.3 times faster).

o Bunch mode: forward and back-propagation of several
examples at once (up to 10 times faster).

o Multi-processing: use of SMP-capable BLAS libraries for
off-the-shelf bi-processor machines (1.5 times faster).

The most of the improvement was obtained by using bunch
mode in the forward and backward pass. After calculating the

TABLE I
TRAINING TIMES REFLECTING THE DIFFERENT IMPROVEMENTS (ON A INTEL PENTIUM CPU AT 2.8 GHZz).

size of || double | float bunch mode SMP
training data || prec. | prec. 2 | 4 | 8 | 16 | 32 | 128 | 128
1.1M words 2h 1h16 | 37m 3lm | 24m | 14m | 11m | 8m18 | 5m50
12.4M words 47h 30h | 10h12 | 8h18 | 6h51 | 4h01 | 2h51 | 2h09 | 1h27

derivatives of the error function AK at the output layer, the
following equations were used (similar to [11]):

k = k—MK=xi (11)
AB = VTxAK (12)
V = -MKs«D" +av (13)
AB = AB.x(1-D.xD) (14)
b = b—AABxi (15)
AC = MTxAB (16)
M = -AB=x«CT +aM (17

where i = (1,1,...1)7, with a dimension of the bunch size.
Note that the backprop and weight update step, including
weight decay, is done in one operation using the GEMM
function of the BLAS library (egn. 13 and 17). For this, the
weight decay factor ¢ is incorporated into o« = 1 — Xe. The
update step of the projection matrix is not shown for clarity.

Table 1l summarizes the effect of the different techniques to
speed up training. Extensive experiments were first done with
a training corpus of 1.1M words and then applied to the full
CTS corpus of 12.4M words. Bilmes et al. reported that the
number of epochs needed to achieve the same MSE increases
with the bunch size [11]. In our experiments the convergence
behavior also changed with the bunch size, but after adapting
the learning parameters of the neural network only small losses
in perplexity were observed, dnd there was no impact on the
word error when the neural LM was used in lattice rescoring.

A. Regrouping of training examples

The above described bunch mode optimization is generic
and can be applied to any neural network learning problem,
although it is most useful for large tasks like this one. In
addition we propose new techniques that rely on the partic-
ular characteristics of the language model training corpus. A
straightforward implementation of stochastic backpropagation
is to cycle through the training corpus, in random order, and
to perform a forward/backward pass and weight update for
each 4-gram. However, in large texts it is frequent to en-
counter some 4-grams several times. This means that identical
examples are trained several times. This is different from
other pattern recognition tasks, for instance optical character
recognition, for which it is unlikely to encounter twice the
exactly same example (same input and targets) since the
inputs are usually floating point numbers. In addition, for the
LM task, we will find many contexts in the training texts
for which several different words should be predicted, of

course with potentially different probabilities. In other words,
we can say that for each trigram there are usually several
corresponding 4-grams. This fact can be used to substantially
decrease the number of operations. The idea is to regroup
these examples and to perform only one forward and backward
pass though the neural network. The only difference is that
there are now multiple output targets for each input context.
Furthermore, 4-grams appearing multiple times can be learned
at once by multiplying the corresponding gradients by the
number of occurrences. This is equivalent to using bunch
mode where each bunch includes all examples with the same
trigram context. Alternatively, the targets can also be set to the
estimated posterior probabilities, i.e. the relative frequencies
of the 4-grams with a common context.

TABLE 111
TRAINING TIMES FOR STOCHASTIC BACKPROPAGATION USING RANDOM
PRESENTATION OF ALL 4-GRAMS IN COMPARISON TO REGROUPING ALL
4-GRAMS THAT HAVE A COMMON TRIGRAM CONTEXT (BUNCH SIZE=32).

words in corpus: [229k | 1IM [12.4M
Random presentation:
4-grams || 162k 927k 11.0M
training time 144s 11m 171m
Regrouping:
distinct 3-grams || 124k | 507k 3.3M
training time 106s | 6m35s 58m

In stochastic backpropagation with random presentation
order the number of forward and backward passes corresponds
to the total number of 4-grams in the training corpus which
is roughly equal to the number of words.* With the new
algorithm the number of forward and backward passes is equal
to the number of distinct trigrams in the training corpora. One
of the major advantage of this approach is that the expected
gain, i.e. the relation between the total number of 4-grams
and distinct trigrams, increases with the size of the training
corpus. Altough this approach is particularly interesting for
large training corpora (see table Ill), we were not able to
achieve the same convergence as with random presentation
of individual 4-grams. Overall the perplexities obtained with
the regrouping algorithm were slightly higher.

4The sentence were surrounded by begin and end of sentence markers. The
first two words of a sentence do not form a full 4-gram, i.e. a sentence of
3-words has only two 4-grams.

B. Neural network capacity

Another open question is the capacity needed to learn
language models with a neural network. Given the new learn-
ing algorithm it was possible to train large neural networks
(up to 2M parameters) on the full set of 12.4M examples.
These experiments are summarized in figure 3 which shows
the perplexity when training neural networks with a hidden
layer size between 100 and 1024 units. The other parameters
were n=4, N=51k, shortlist=2000 and P=50. In all cases no
overfitting was observed, neither when performing training for
up to fifty epochs, nor when increasing the hidden layer size
(the small oscillations are due to a new random order after each
epoch). For comparison the perplexity of a backoff 4-gram
trained on the same corpus of 12.4M words is 63.0 (stright
line in figure 3).

L T T T
3t hid 100 ——
644 hid 200 ------- 1
T iS00
ackof f 4-gram hid 400 - :
63 ""b"'k"f'f"{'g"”""'"'"”"'""'"'"'"”""NdSOO'::";""
hid 600 -~
hid 1024 --------

262 E

x

K9]

3 61 s
60 | e E
59 | TR

1 1 1 1
0 10 20 30 40 50
#epochs
Fig. 3. Perplexity on the development data for different network sizes

The improvements in perplexity obtained by the very large
networks did not lead to a notable decrease in word error (see
table 1V). This is not surprising since it is known that lower
perplexity does not necessarily lead to lower word error due to
the mismatch in the criteria. For these experiments, the neural
network LM was interpolated with the reference backoff LM
and the lattices of the last decoding pass were rescored.

TABLE IV
EVALO1 WORD ERROR RATES FOR DIFFERENT NETWORK SIZES

backoff number of hidden units of the neural LM
LM 100 200 300 400 500 600 1024
21.47 |21.16 21.15 21.13 21.08 20.99 21.03 21.02

werr [%]

Larger short lists (up to 32k) were also tested, but the small
gains in perplexity were not worth the increase in complexity.
The time to rescore the lattices increasing almost linearly with
the size of the hidden layer and the shortlist length, we decided
to use a network with a 2k shortlist and with 500 hidden units.
This neural network LM has been evaluated on the official test
sets of the NIST CTS 2002 and 2003 evaluations. The word
error rates decreased from 24.8 to 24.0% and 23.7 to 23.0%
respectively compared to the optimized 4-gram backoff LM.

V1. CONCLUSIONS

This paper has described a large scale application of a neural
network language model to conversational speech recognition.
By using neural network language models we seek to achieve
better estimation of the LM probabilities by performing the
estimation in a continuous space, allowing by these means
“smooth interpolations.”

Several algorithms have been developed to reduce the high
complexity of the approach during training and recognition.
On a standard PC one training epoch with 11M examples takes
1h30m for a neural network with 650k parameters. Decoding
of continuous speech is done with help of optimized lattice
rescoring in less then 0.05 times real time. This approach
achieved consistent word error reductions of about 0.6% with
respect to a carefully tuned backoff 4-gram LM. The neural
network LM was employed in the LIMSI systems evaluated
in the last two NIST benchmarks on conversational speech
recognition.

ACKNOWLEDGMENT

The authors would like to recognize the contributions of
J.L. Gauvain, L. Lamel, G. Adda, and F. Lefévre for their
involvement in the development of the LIMSI conversational
speech recognition system on top of which this work is based.

REFERENCES

[1] S. F. Chen and J. T. Goodman, “An empirical study of smoothing
techniques for language modeling,” Computer Speech & Language,
vol. 13, no. 4, pp. 359-394, 1999.

[2] Y. Bengio and R. Ducharme, “A neural probabilistic language model,” in
Advances in Neural Information Processing Systems, vol. 13. Morgan
Kaufmann, 2001.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of Machine Learning Research, vol. 3,
no. 2, pp. 1137-1155, 2003.

[4] H. Schwenk and J.-L. Gauvain, “Connectionist language modeling
for large vocabulary continuous speech recognition,” in International
Conference on Acoustics, Speech, and Signal Processing, 2002, pp. I:
765-768.

[5] ——, “Using Continuous Space Language Models for Conversational
Speech Recognition,” in ISCA & |EEE Workshop on Spontaneous Speech
Processing and Recognition, Tokyo, April 2003.

[6] A. Emami, P. Xu, and F. Jelinek, “Using a connectionist model in
a syntactical based language model,” in International Conference on
Acoustics, Speech, and Sgnal Processing, 2003, pp. 1:272-375.

[7]1 A. Lee, J. Fiscus, J. Garofolo, M. Przybocki, A. Martin, G. Sanders,
and D. Pallett, “Spring speech-to-text transcription evaluation results,”
in Rich Transcription Workshop, Boston, May 19 2003.

[8] R. lyer and M. Ostendorf, “Relevance weighting for combining multi-
domain data for n-gram language modeling,” Computer Speech &
Language, vol. 13, no. 3, pp. 267-282, 1999.

[9] J.-L. Gauvain, L. Lamel, H. Schwenk, G. Adda, L. Chen, and F. Lefévre,
“Conversational telephone speech recognition,” in International Confer-
ence on Acoustics, Speech, and Signal Processing, 2003, pp. 1:212-215.

[10] A. Stolcke, “SRILM - an extensible language modeling toolkit,” in
International Conference on Speech and Language Processing, 2002,
pp. 11: 901-904.

[11] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Using phipac to
speed error back-propagation learning,” in International Conference on
Acoustics, Speech, and Sgnal Processing, 1997, pp. V:4153-4156.

[12] Intel’s MKL, “Intel math kernel library,
http://www.intel.com/software/products/mkl/.”

[13] ATLAS, “Automatically tuned linear algebra software,
http://www.netlib.org/atlas.”

[14] Y. Bengio and J.-S. Sénécal, “Quick training of probabilistic neural nets
by importance sampling,” in AISTATS Conference, 2003.

