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Abstract

Recently there is growing interest in using neural networks for
language modeling. In contrast to the well known backoff n-
gram language models (LM), the neural network approach tries
to limit problems from the data sparseness by performing the es-
timation in a continuous space, allowing by these means smooth
interpolations. Therefore this type of LM is interesting for tasks
for which only a very limited amount of in-domain training data
is available, such as the modeling of conversational speech.

In this paper we analyze the generalization behavior of
the neural network LM for in-domain training corpora vary-
ing from 7M to over 21M words. In all cases, significant word
error reductions were observed compared to a carefully tuned
4-gram backoff language model in a state of the art conversa-
tional speech recognizer for the NIST rich transcription evalu-
ations. We also apply ensemble learning methods and discuss
their connections with LM interpolation.

1. Introduction
Language modeling of conversational speech is known to be a
challenging task due to the unconstrained speaking style, fre-
quent grammatical errors, hesitations, start-overs, etc. In addi-
tion, language modeling for conversational speech suffers from
a lack of adequate training data since the main source is audio
transcriptions, in contrast to the broadcast news (BN) task for
which other news sources are readily available. Unfortunately,
collecting large amounts of conversational data and producing
detailed transcriptions is very costly. One possibility is to in-
crease the amount of training data by selecting conversational-
like sentences in BN material and on the Internet, or by trans-
forming other sources to be more conversational-like.

Recently, a new approach has been developed that proposes
to carry out the estimation task in a continuous space [1, 2], with
the goal of making better use of the limited amount of training
material. The basic idea is to project the word indices onto a
continuous space and to use a probability estimator operating on
this space. Since the resulting probability functions are smooth
functions of the word representation, better generalization to
unknown n-grams can be expected. A neural network can be
used to simultaneously learn the projection of the words onto
the continuous space and the n-gram probability estimation.

The first evaluation of such an approach in a conversational
speech recognizer has shown that it can be used to reduce the
word error [3]. These results were later confirmed with an im-
proved speech recognizer for the DARPA Switchboard (SWB)
task [4]. A neural network LM has also been used with a Syn-
tactical Language Model showing perplexity and word error im-
provements on the Wallstreet Journal corpus [5]. In our previ-
ous work the neural network LM was trained on about 6.1M

words and the word error rates were in the range of 25%. Since
then, large amounts of conversational data have been collected
in the DARPA EARS program and quick transcriptions were
made available (total of about 1800h, 21.7M words), helping
to build better speech recognizers. This amount of LM train-
ing data enables better training of the backoff 4-gram LM and
one may wonder if the neural network LM, a method developed
for probability estimation of sparse data, still achieves an im-
provement. In this paper we show that the neural network LM
continues to achieve consistent word error reductions with re-
spect to a carefully tuned backoff 4-gram LM. Detailed results
are provided as a function of the size of the LM training data.
We also compare the behavior on the training and test data. Fi-
nally we investigate training multpile neural networks in order
to achieve better convergence.

2. Architecture of the Neural Network LM
The architecture of the neural network n-gram LM is shown
in Figure 1. A standard fully-connected multi-layer percep-
tron is used. The inputs to the neural network are the in-
dices of the n−1 previous words in the vocabulary hj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the posterior prob-
abilities of all words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

where N is the size of the vocabulary. This can be contrasted
to standard language modeling where each n-gram probability
is calculated independently. The input uses the so-called 1-of-n
coding, i.e., the i-th word of the vocabulary is coded by setting
the i-th element of the vector to 1 and all the other elements
to 0. This coding substantially simplifies the calculation of the
projection layer since only the i-th line needs to be copied of the
N × P dimensional projection matrix, where N is the size of
the vocabulary and P the size of the projection.

Let us denote ck these projections, dj the hidden layer ac-
tivities, oi the outputs, pi their softmax normalization, and mjk,
bj , vij and ki the hidden and output layer weights and the cor-
responding biases. Using matrix/vector notation the neural net-
work performs the following operations:

d = tanh (M ∗ c + b) (2)

o = tanh (V ∗ d + k) (3)

p = exp(o) /

NX
k=1

eok (4)

where lower case bold letters denote vectors and upper case
bold letters denote matrices. The tanh and exp function as
well as the division are performed element wise. The value
of the output neuron pi corresponds directly to the probability



hidden
layer

projection
layer

output
layerinput

shared
projections

continuous

probability estimation

representation: representation:
indices in wordlist

LM probabilities

Neural Network

discrete
for all words

N

wj−1 P

H

N

P (wj =i|hj)

P (wj =1|hj)

P (wj =N|hj )

wj−n+1

wj−n+2

ck

oi

P dimensional vectors

Vdj

M pi =

pN =

p1 =

Figure 1: Architecture of the neural network language model.
hj denotes the context wj−n+1, ..., wj−1. P is the size of one
projection and H and N is the size of the hidden and output
layer respectively. When shortlists are used the size of the out-
put layer is much smaller then the size of the vocabulary.

P (wj = i|hj). Training is performed with the standard back-
propagation algorithm using the cross-entropy as error function,
and a weight decay regularization term. The targets are set to
1.0 for the next word in the training sentence and to 0.0 for all
the other ones. It can be shown that the outputs of a neural
network trained in this manner converge to the posterior prob-
abilities. Therefore, the neural network directly minimizes the
perplexity on the training data. Note also that the gradient is
back-propagated through the projection-layer, which means that
the neural network learns the projection of the words onto the
continuous space that is best for the probability estimation task.

The complexity of this basic architecture during training
and recognition is quite high, in particular due to the large size
of the output layer. Therefore, we chose to limit the output of
the neural network to the most frequent words, referred to as
a shortlist in the following discussion. All words in the word
list are still considered at the input of the neural network. In
all the experiments reported in this paper a shortlist length of
2000 was used, which covers about 89% of the LM probabil-
ity requests during lattice rescoring. The LM probabilities of
the words in the shortlist (P̂N ) are calculated by the neural net-
work and the LM probabilities of the remaining words (PB) are
obtained from a standard 4-gram backoff LM:

P (wj |hj) =


P̂N (wj |hj) PS(hj) if wj ∈ shortlist
PB(wj |hj) else

(5)

with PS(hj) =
X

w∈shortlist(hj)

PB(w|hj) (6)

In other words, one can say that the neural network redis-
tributes the probability mass of all the words in the shortlist.1

This probability mass is precalculated and stored in the data
structures of the standard 4-gram LM. A backoff technique is

1Note that the sum of the probabilities of the words in the shortlist
for a given context is normalized

P
w∈shortlist P̂N (w|hj) = 1.

used if the probability mass for a requested input context is not
directly available.

In our current implementation one training epoch through
21M words takes about 7h on a PC with a 2.8GHz Intel Xeon
processor running under Linux. During recognition, the neu-
ral network language model is used to rescore word lattices af-
ter acoustic MLLR adaptation which typically takes less than
0.1xRT. Details of these algorithms are given in [6].

3. Baseline Speech Recognizer
In this paper the neural network language model is evaluated in
a state of the art speech recognizer for conversational telephone
speech (CTS)[4]. The word recognizer uses continuous den-
sity HMMs with Gaussian mixture for acoustic modeling and
n-gram statistics estimated on large text corpora for language
modeling. Each context-dependent phone model is a tied-state
left-to-right CD-HMM with Gaussian mixture observation den-
sities where the tied states are obtained by means of a deci-
sion tree. The acoustic feature vector has 39-components in-
cluding 12 cepstrum coefficients and the log energy, along with
their first and second derivatives. Cepstral mean and variance
normalization are carried out on each conversation side. The
acoustic models are MMI trained on 860 hours of data.

Decoding is carried out in 3 passes. In the first pass the
speaker gender for each conversation side is identified using
Gaussian mixture models, and a fast trigram decode is per-
formed to generate approximate transcriptions. These transcrip-
tions are used to compute the VTLN warp factors for each con-
versation side and to adapt the SAT models that are used in the
second pass. Passes 2 and 3 make use of the VTLN-warped
data to generate a trigram lattice per speaker turn which is ex-
panded with the 4-gram baseline backoff LM and converted into
a confusion network with posterior probabilities. The best hy-
pothesis in the confusion network is used in the next decoding
pass for unsupervised MLLR adaptation of the acoustic models
(constraint and unconstrained). The third pass is similar to the
second one but more phonemic regression classes are used and
the search space is limited to the word graph obtained in the
second pass. The overall run time is about 19xRT.

4. Language model training
The main source for training a LM for conversational speech are
the transcriptions of the audio training corpora. Three different
in-domain data corpora have been used:

7.2M words Our first experiments were carried out with the
initial release of transcriptions of acoustic training data
for the SWB task, namely the careful transcriptions
of the SWB corpus distributed by LDC (2.7M words)
and by ISIP (2.9M words), the Callhome corpus (217k
words), some SWB cellular data (230k words) and fast
transcriptions of a previously unused part of the SWB2
corpus (80h, 1.1M word).

12.3M words In 2003 LDC changed the data collection
paradigm of conversational data to the so called “Fisher-
protocol”. Fast transcriptions of 520h of such data were
available for this work.

21.7M words In a second release, fast transcriptions of addi-
tional 1300h have been made available, almost doubling
the total amount of language model training data.

In addition to these in-domain corpora the following texts
have been used to train the 4-gram backoff LM:



• 240M words of commercially produced BN transcripts,

• 80M words of CNN television BN transcriptions,

• 180M words of conversational like data that was col-
lected from the Internet.2

We refer to these 500M words as BN corpus. Adding other
sources, in particular newspaper text, did not turn out to be use-
ful. The LM vocabulary contains 51077 words. The baseline
LM is constructed as follows: Separate backoff n-gram LMs are
estimated on all the above corpora using the modified version of
Kneser-Ney smoothing as implemented in the SRI LM toolkit
[7]. A single backoff LM was built by merging these models,
estimating the interpolation coefficients with an EM procedure.
Table 1 gives some statistics about the reference LMs.

in-domain data [words]
(+500M words BN data)

7.2M 12.3M 21.7M

number of 2-grams 20.1M 20.1M 20.2M
3-grams 38.8M 31.5M 33.0M
4-grams 24.0M 24.3M 28.4M

Perplexity on Eval03 test 53.0 51.5 49.8

Table 1: Statistics for the backoff 4-gram reference LM built
using in-domain training data of varying sizes and 500M words
of BN data.

5. Experimental results
The neural network LM was trained only on the in-domain cor-
pora. Two experiments have been conducted:

1. The neural network LM is interpolated with a backoff
LM that was trained only on the in-domain copora and
compared to this LM,

2. The neural network LM is interpolated with the full
backoff LM (in-domain and BN data) and compared to
this full LM.

The first experiment allows us to assess the real benefit of the
neural LM since the two smoothing approaches (backoff and
neural network) are compared on the same data. In the sec-
ond experiment all the available data is used to obtain the over-
all best results. The perplexities of the neural network and the
backoff LM are given in Table 2.

in-domain data [words]: 7.2M 12.3M 21.7M
In-domain data only:

backoff LM 62.4 55.9 53.3
neural LM 57.0 50.6 48.5

Interpolated with all data:
backoff LM 53.0 51.1 49.8

neural LM 50.8 48.0 46.6

Table 2: Eval03 test set perplexities for the backoff and neural
LM as a function of the size of the in-domain training data.

A perplexity reduction of about 9% relative is obtained in-
dependently of the size of the LM training data. This gain de-
creases to approximatively 6% after interpolation with the back-
off LM trained on the additional 500M word of out-of domain
data. It can been seen that the perplexity of the neural network
LM trained only on the in-domain data is better than that of the
backoff reference LM trained on all data (48.5 with respect to

2This data has been provided by the University of Washington.

49.8). Despite these rather small gains in perplexity, consis-
tent word error reductions were observed (see Figure 2). The
first system is that described in [4]. The second system has a
much lower word error rate than the first one due to several im-
provements of the acoustics models, and the availability of more
acoustic training data. The third system differs from the second
one only by the amount of LM training data, the acoustic mod-
els have not been modified. The small decrease in word error in
this case suggests that more LM training data would be of little
help.3
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Figure 2: Word error rates on the Eval03 test set for the backoff
LM and the neural network LM, trained only on in-domain data
(left bars for each system) and interpolated with 500M word BN
LM (right bars for each system).

Although the size of the LM training data has almost tripled
from 7.2M to 21.7M words, a consistent absolute word error re-
duction of 0.55% can be observed. In all these experiments, it
seems that the word error reductions brought by the neural net-
work LM are independent of the other improvements, in partic-
ular those obtained by better acoustic modeling and by adding
more language model training data. When only in-domain data
is used (left bars for each system in Figure 2) the neural net-
work LM achieves an absolute word error reduction of about
0.8%. Note also that the neural network LM trained on at least
12.3M words is better than the backoff LM that uses in addition
500M words of the BN corpus. In a contrastive experiment,
backoff and neural LMs were trained on a random 400k word
subset of the 21.7M corpus, simulating for instance a domain
specific task with very little LM training data. In this case, the
neural network LM decreased the perplexity from 84.9 to 75.6
and the word error rate from 25.60% to 24.67%.

In order to get more insight in the generalization behavior
of the neural network LM the word error on the training corpus
has been calculated. This has been done by rescoring 2-gram
lattices that were generated for MMI acoustic model training
(see Table 3, 12.3M words). Words that are in the training data,
but not in the recognition lexicon were replaced by silence. It
is not surprising to see that the backoff LMs have a very low

backoff LM neural LM
3-gram 4-gram 4-gram

perplexity 33.3 17.7 41.9
word error 23.6% 18.6% 20.1%

Table 3: Performance on the training data for both LM.

3Going from 7.2M to 12.3M words of LM data gave a word error
reduction of about 0.5% without changing the acoustic models.



perplexity on the training data, since these are basically “mem-
ory based” models that store the complete training data.4 The
4-gram neural network LM, which is a more a compact repre-
sentation of the data, has a much higher training perplexity than
the 4-gram and even the 3-gram backoff LM. The perplexity is
almost comparable to that obtained on the test data, which may
be seen as an indicator for good generalization behavior.

6. Interpolation and ensembles
When building backoff LM for a collection of training corpora,
better results are usually obtained by first building separate LMs
for each corpus and then merging them together using interpola-
tion coefficients obtained by optimizing the perplexity on some
development data [8]. This procedure has been used for all our
backoff LMs. It is, however, not so straightforward to apply
this technique to a neural network LM since individually trained
LMs can not be merged together, and they need to be interpo-
lated on the fly. In addition, it may be sub-optimal to train the
neural network LMs on subparts of the training corpus since the
continuous word representation is not learned on all data. For
this reason, in the above described experiments only one neural
network was trained on all data.

Training large neural networks (2M parameters) on a lot
of data (21.4M examples) with stochastic backpropagation can
be quite slow and poses convergence problems. We have de-
veloped very fast algorithms (see [6] for details), but we be-
lieve that the neural network underfit the training data. Unfor-
tunately, more sophisticated techniques than stochastic gradient
descent are not tractable for problems of this size. On the other
hand, several well known ensemble learning algorithms used in
the machine learning community can be applied to neural net-
works, in particular Bagging and AdaBoost. Following to the
bias/variance decomposition of error, Bagging improves perfor-
mance by minimizing the variance of the classifiers [9], while
AdaBoost sequentially constructs classifiers that try to correct
the errors of the previous ones [10]. In this work we have eval-
uated another variance reduction method: several networks are
trained on all the data, but after each epoch the training data is
randomly shuffled.

#hidden units 1024 1280 1560 1600 2000

One network 22.19 22.22 22.18 - -
Ensembles: 2x500 3x400 3x500 4x400 4x500

22.15 22.12 22.07 22.09 22.09

Table 4: Word error rates for one large neural network and en-
sembles, trained on the 12.4M word in-domain corpus only.

As can been seen in Table 4 increasing the number of pa-
rameters of one large neural network does not lead to improve-
ments for more than 1000 hidden units, but using ensembles of
several neural networks with the same total number of parame-
ters results in a slight decrease in the word error rate.

7. Conclusions
This paper has extended our recent work on language modeling
using neural networks. The discrete word indices are projected
onto a continuous space, allowing by these means “smooth in-
terpolations” of the LM probabilities. The neural network LM
has been evaluated using in-domain corpora of 7.2M to 21.4M

4If no cut-offs are used.

words of acoustic transcriptions. When compared to a carefully
tuned backoff 4-gram LM trained on the same data, the new
approach achieves consistent word error reductions of about
0.8% in a state-of-the-art conversational speech recognizer on
the NIST RT03 evaluation data. Even after adding 500M words
of out-domain broadcast news data to the backoff LM only, the
neural network LM still achieves better results. Our best system
with the neural network LM has a word error rate of 21.5% on
the Eval03 test set while the system with the backoff reference
LM only achieves 22.0%. Both systems run in 19xRT.

The neural network LM learns a distributed representation
of the LM probability distributions, achieving by these means
good generalization to unseen n-grams. Backoff LMs are mem-
ory based models and have a tendency to overfit the training
data. Thus much lower perplexities and word error rates on the
training data were observed, but the results are worse on inde-
pendent test data. Future work will concentrate on (word) error
corrective training algorithms like AdaBoost and training cri-
teria that directly minimize the estimated word error when the
LM is used in a speech recognizer.
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