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ABSTRACT

Adaptive training aims at reducing the influence of speaker, chan-

nel and environment variability on the acoustic models. We de-
scribe an acoustic normalization approach to adaptive training.

Phonetically irrelevant acoustic variability is reduced at the begin-

ning of the training procedure w. r. t. a set of target models. The

set of target models can be a set of HMMs or a Gaussian mixture
model (GMM). CMLLR is applied to normalize the acoustic fea-

tures. The normalized data contains less unwanted variability and

is used to generate and train the recognition models. Employing a

GMM as a target model leads to a text-independent procedure that
can be embedded into the acoustic front-end. On a broadcast news

transcription task we obtain relative reductions in WER of 7.8% in

the first recognition pass over a conventionally trained system and

of 3.4% in the second recognition pass over a SAT-trained system.

1. INTRODUCTION

A major challenge in speech recognition is to achieve good results

in tasks where recording conditions, acoustic environment, quality
of the transmission channel or speaker frequently change. Such a

task is the automatic transcription of broadcast news, i. e. recorded

news shows from television and radio networks. For this paper we

distinguish between phonetic variability, i. e. differences between
the speech sounds that are relevant for their discrimination, and the

phonetically irrelevant variability which is caused by the diversity

of speakers, transmission channels and acoustic environments. For

increased readability the single term speaker variability subsumes
here all kinds of speaker, channel and environment variability. The

approach introduced here belongs to the group of adaptive train-
ing schemes [1]. These algorithms have in common that they esti-
mate speaker-specific transformations –either of the models or of
the acoustic features– to exclude phonetically irrelevant variability

from the training. Ideally, the acoustic models only learn phonetic

variability. Well-known representatives of adaptive training algo-

rithms are Speaker Adaptive Training (SAT) [2] and Vocal Tract
Length Normalization (VTLN) [3]. Both procedures have shown
to outperform conventional training methods.

1.1. Approach

In this paper we apply an acoustic normalization approach to re-

duce the influence of irrelevant variability on the acoustic models

[4]. The training procedure consists of three stages: Firstly, pre-
liminary acoustic models are trained on the original features. The
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resulting models are called target models. Secondly, the features
are transformed w. r. t. the target models and the current speaker or

acoustic condition using Constrained Maximum Likelihood Linear
Regression (CMLLR) [5]. The transformed, or normalized, fea-
tures are supposed to contain less speaker variability. Thirdly, the

recognition models are generated and trained on the transformed
data. One of the differences of this approach to other adaptive

training methods is that the target models and the recognition mod-
els are independent, i. e. they may have a different model struc-

ture. Therefore we measure the performance that can be achieved

for different types of target models, comparing target models with

just one Gaussian per state and complex target models. The for-
mer is shown to be advantageous; this is consistent with previous

work [4]. We also introduce a very simple target model that is

just a Gaussian Mixture Model (GMM). As in this case word tran-
scriptions of test utterances are not required for estimating the fea-
ture transformation, acoustic data normalization can be applied at

recognition stage without any preliminary decoding step. Another

contribution of the paper is to compare the proposed approach with

a popular variant of SAT introduced by Gales [6].

1.2. Related work

Several adaptive training procedures are well-known from the liter-

ature. SAT [2] is one of the most popular approaches. Supervised

adaptation is performed for each training speaker in each itera-

tion of the Baum-Welch algorithm. As adaptation requires a suf-
ficiently trained acoustic model, usually 2–3 iterations of SAT are

added on top of a conventional training procedure. In recognition

two passes are performed: the first generates a preliminary tran-

scription of the utterance which is used to adapt the SAT-trained
acoustic models to the test speaker. A second recognition pass us-

ing the adapted models generates the final result. Usually,modified
SAT [7, 6] is employed that allows for an efficient implementation.
In broadcast news transcription tasks this variant of SAT leads typ-
ically to 3–5% relative reduction in word error rate (WER) over an

adapted, conventionally trained baseline system (e. g. [7]). Both

modified SAT and the proposed acoustic normalization approach

use CMLLR for feature transformation. While in SAT adaptation
and training of the models are alternated, in the proposed method

two sequential steps are performed for acoustic normalization and

training. Thus, speaker variability is reduced not at the end but at

the beginning of the training of the recognition models. A detailed

discussion of the consequences of this difference can be found in
Sec. 2. It is shown in this paper that the proposed approach can be

applied in a text-independent manner that avoids the preliminary

recognition step required by SAT.

Being an acoustic normalization procedure, the approach
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described in this paper is similar to the one introduced in [8] or to

VTLN [3]. The main difference of the proposed approach to these

methods is that we employ CMLLR for normalizing the data. In
[4] it has already been shown that the proposed method compares

favorably to VTLN. Note also that VTLN is limited to normalize

vocal tract shape differences of speakers while CMLLR can be

applied more generally to normalize acoustic variability due to a
variety of sources.

The paper is structured as follows: Sec. 2 is dedicated to a de-
tailed description of our approach, and its application to improve

the performance of the first and second recognition passes. At the

end of this section the differences to other adaptive training ap-

proaches are discussed. The data corpus and the baseline system
are introduced in Sec. 3. Experiments in Sec. 4 verify the effec-

tiveness of the approach. Finally, we give a conclusion and a short

prospect on our future work in Sec. 5.

2. ADAPTIVE TRAINING USING TARGET MODELS

The proposed procedure is motivated by the aim of reducing the in-

fluence of speaker variability in the early stages of acoustic model
training.

We exploit the fact that a set of continuous density HMMs

can be effectively adapted using CMLLR [5, 6]: A transformation
{M,d} is applied to mean µm �→ Mµm + d and covariance
Σm �→ MΣmM� of each Gaussian density N (ot | µm,Σm),
resulting in adapted densities N (ot | Mµm + d,MΣmM�).
All densities have the same transformation in common. For
each speaker s a single transformation {M̂s, d̂s} is estimated
using the EM-algorithm. The objective is to maximize the log-

likelihood L(Os | {M, d},Λ,W) of the acoustic models Λ for
the speaker’s utterance Os = os,1, . . . ,os,T . W stands for the
word-level transcription of the utterance Os. It can be shown that

the model-transformation {M̂s, d̂s} can be implemented using a
transformation {As := M̂−1

s ,bs := −M̂−1
s d̂s} of the feature

vectors os,t. The transformed feature vectors o
Λ
s,t are computed

according to oΛ
s,t := Asos,t + bs. In this work we apply CM-

LLR as a feature transformation. In the experiments reported here
Os does not necessarily correspond to a speaker’s utterance but

to a cluster of acoustically similar speech segments that have been

determined in a data-driven manner.

While CMLLR adaptation is usually performed w. r. t. the

recognition models, our approach for adaptive training is to use

separate sets of models. For acoustic normalization so-called tar-
get models Λn are used. For the acoustic representation in the de-
coding phase recognition modelsΛr are employed. All parameters

of the two model sets, like initialization, definition of the context-

dependent allophones or model structure are completely indepen-

dent. Therefore we investigate different types of target models.
Using a GMM as a target model leads to a text-independent ap-

proach; when the target models are triphone HMMs the procedure

becomes text-dependent.

2.1. Adaptive training procedure

The proposed training algorithm proceeds as follows:

1. train target model Λn on untransformed feature vectors O.
Λn may be either a GMM or a set of triphone HMMs.

2. for each speaker s, estimate {As,bs} w. r. t. Λn for the

feature vectorsOs. Apply {As,bs} toOs, yielding trans-

formed feature vectorsOn
s .

3. use the conventional training procedure to initialize and to

train the recognition models Λr on On; including state ty-

ing and the definition of the context-dependent allophones.

2.2. Recognition procedure

When a GMM is used as a target model Λn CMLLR normaliza-

tion can be performed without the need for word-level transcrip-

tions. Thus, in this case no word-level transcriptions are required

for the acoustic normalization and recognition starts from an un-
transcribed utterance Os. For triphone HMMs as target models,

a transcription of the utterance has to be available from a previ-

ous recognition pass. Normalization and decoding is performed as

follows:

1. estimate {As,bs} w. r. t. Λn for the feature vectors Os.
Apply {As,bs} to Os, yielding transformed feature vec-

torsOn
s .

2. decodeOn using Λr.

Of course, using CMLLR for acoustic feature normalization does

not prevent us from employing Maximum Likelihood Linear Re-
gression (MLLR) [9] to adapt the recognition models Λr for the
second recognition pass. Note that in this work we never observed

a performance gain when we used acoustic feature normalization

in conjunction with MLLR adaptation of the recognition models

Λr. Thus, in this case both adaptation and decoding are based on
untransformed feature vectorsOs.

2.3. Relation to SAT

VTLN [3] and SAT [2, 6] are the most popular adaptive training

algorithms. As we have already confronted our proposed method
to VTLN in [4], we give here a comparison to SAT. The most

prominent difference between the two approaches is that in SAT

adaptation and training steps are alternated and not performed one

after another like in acoustic normalization. As alternation of
adaptation and training requires sufficiently trained models, SAT

is added on top of a conventional training procedure. Thus, the

acoustic models have already taken over speaker variability in the

conventional training phase, and subsequent SAT iterations have
to alleviate this. The authors of [2] expressed their believe that

other initialization methods for SAT should be taken into consid-

eration. In particular, the decision tree for defining the state ty-

ing and the context-dependent allophones is determined using the
conventionally trained models and cannot be adjusted any more

during SAT [10]. For the proposed acoustic normalization proce-

dure the decision tree is determined from models that have already

been trained on normalized features. Consequently the state ty-

ing and the context-dependent allophones are consistent with the
adaptively trained models. Furthermore, in SAT the first recog-

nition pass is always performed using unadapted baseline mod-

els which include the speaker variability. For a high mismatch

between training and testing the initial transcription will be poor
and in consequence the transformation parameters may as well by

poorly estimated [1]. As we have described in this section, the pro-

posed method can be applied already in the first recognition pass

and is able to reduce the errors in the initial utterance transcription.
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Reducing speaker variability in SAT using simple acoustic

models has already been investigated by others. Huo and Ma dis-

cuss in [10] the presence of inter-speaker variance in the allophone
definitions. They propose to train untied HMMs with a single

Gaussian per state using SAT. The decision tree for state tying

is then constructed from these models. The main difference to our

work is that Huo andMa concentrate only on the decision tree. Our
approach goes further as we use the simple target models also to

reduce speaker variability learned by the recognition models. Mc-

Donough and Byrne introduce in [11] a variant of SAT which is

named Single-Pass Adapted Training (SPAT). Simple HMMs with
a single Gaussian per state are trained using SAT. The resulting

adaptation parameters are then applied to a set of mixture-density

baseline models. Finally, several iterations of conventional SAT

are added. Thus, this procedure is mainly a different initialization
method for SAT using simple acoustic models.

3. DATA SETS AND BASELINE SYSTEM

We used the BN-E data released by the LDC in 1997 and 1998

for training of the acoustic models. The corpora contain a total of

about 143 hours of usable speech data. For evaluation we use the
1998 Hub4 evaluation data consisting of two files, each with 1.5

hours of speech (Eval98). Results are reported w. r. t. the focus
conditions (F-conditions) marked in this test set:

F0: baseline planned broadcast speech, clean background.

F1: spontaneous broadcast speech, clean background.

F2: speech over telephone, clean background.

F3: speech with background music.

F4: speech with degraded acoustics (noise, other speech).

F5: planned speech by non-native speakers, clean background.

FX: all other conditions that cannot be classified into F0-F5.

Language models were trained on ≈132 million words of broad-
cast news transcripts distributed by LDC and on the transcripts of
the BN-E training data.

We used the ITC-irst speech recognition system for the exper-

iments. The front-end combines 13 Mel-frequency Cepstral Coef-

ficients and their first and second order time derivatives into a 39-

dimensional feature vector. In the baseline system Cluster-based
Mean and Variance Normalization (CMVN) is applied to the static
features: input speech data is segmented using a Bayesian Infor-

mation Criterion. Segments are classified into acoustic conditions.

An automatic clustering is performed for all segments that belong

to the same class. For each cluster, mean and variance of the fea-
tures are normalized. No manual segmentation or clustering is

used in training and recognition. The acoustic models are state-

tied, cross-word, gender-independent, bandwidth-independent tri-

phone HMMs. A phonetic decision tree is used for tying states
and defining the context-dependent allophones. The baseline sys-

tem has 9079 tied states and about 146000 Gaussians; all other

systems in this paper have a similar number of parameters.

4. EXPERIMENTAL RESULTS

We report experimental results for one and two recognition passes:
For experiments with two passes MLLR adaptation is applied to

the recognition models. This requires a preliminary transcription

(supervision) which is generated in a first recognition pass. The

second pass uses the adapted models to generate the final result.

4.1. First-pass recognition results

As in the first pass no transcription is available, a GMM has to be

used as a target model. We compare two different recognizers with

the baseline system (baseline). For the first one, GMM, the mixture
model has been trained using ten iterations of the EM-algorithm.

The GMM is trained on the 39-dimensional feature vectors. Only

segment-based normalization of the mean of the static features is

applied and no variance normalization. Based on preliminary ex-
periments we decided to use 512 mixture components. The second

recognizer is denoted by SAT-GMM. The only difference to GMM
is that the mixture model is trained with ten iterations of SAT.

This is a variant of the basic procedure described in Sec. 2. For
the estimation of the feature transformation both GMM and SAT-
GMM use three iterations of CMLLR. For each cluster of segments
one CMLLR transformation is estimated. Thus, the feature trans-

formation is comparable to CMVN that is applied in the baseline
system, except that CMLLR transforms the whole 39-dimensional

feature vectors and not only the static features. The recognition

models are trained using the same procedure as for the baseline

system. The results are shown in Tab. 1. Clearly, a GMM is much

F-cond. all F0 F1 F2 F3 F4 F5 FX
proportion 100.0 30.7 19.3 3.4 4.3 28.2 0.7 13.5

baseline 20.5 12.9 20.0 30.0 24.0 20.7 20.9 34.3

GMM 19.1 12.2 18.7 27.9 23.9 19.3 18.3 31.4

SAT-GMM 18.9 11.6 17.7 30.4 23.3 19.1 17.0 32.6

Table 1. Recognition results (WER) for the first recognition pass
on Eval98.

better in reducing irrelevant speaker variability than CMVN: the
relative improvements in WER for GMM and SAT-GMM are 6.8%
and 7.8%, respectively. The use of SAT training for the target

model in SAT-GMM leads, however, only to a small additional re-
duction in overall WER.

4.2. Second-pass recognition results

All systems that are compared here use MLLR adaption of the

recognition models with two regression classes. MLLR is based on

the transcription results of the first recognition pass and is applied

both to mean and variances. The baseline system is improved by
adding three iterations of SAT, the resulting recognizer is denoted

by baseline+SAT. For SAT we use in training and recognition the
standard procedure as it is described in [6]. The system complex-
target is built using the acoustic models of baseline+SAT as target
models. After CMVN the features are transformed w. r. t. these

models and then a complete new recognizer is trained. The system

simple-target uses target models that have been trained with just
a single Gaussian per state. For simple-target only segment-based
mean normalization is applied to the features before CMLLR.

In a first experiment we measure the effectiveness of the

acoustic normalization approach for the broadcast news task.
Tab. 2 confronts the baseline system (baseline), the SAT-
trained baseline system (baseline+SAT), and the proposed method
(complex-target, simple-target, SAT-GMM) exploiting the word
transcriptions that have been generated using the baseline recog-
nizer. SAT leads to an improvement of 5.3% relative in WER

over the adapted baseline system. Acoustic normalization using a

simple target models is more effective: the corresponding relative

reduction for the best system simple-target is 8.6%. A complex

I - 999

➡ ➡



F-cond. all F0 F1 F2 F3 F4 F5 FX

proportion 100.0 30.7 19.3 3.4 4.3 28.2 0.7 13.5

baseline 18.7 11.7 18.7 24.7 23.0 19.0 19.6 30.8

baseline+SAT 17.7 11.4 17.3 24.3 21.5 17.7 19.6 29.9
complex-target 17.9 11.3 17.9 22.8 22.2 18.1 19.6 29.6

simple-target 17.1 10.9 16.8 21.4 21.1 17.4 18.3 28.4

SAT-GMM 17.4 11.0 17.2 21.6 21.4 17.8 17.9 29.1

Table 2. Recognition results (WER) for the second recognition
pass on Eval98 using the baseline supervision.

target model improves over the conventionally trained system, but
performs slightly worse than the SAT-trained baseline. The acous-

tic normalization procedure using the SAT-trained GMM performs

surprisingly good (7.0% relative reduction in WER).

Secondly, the different recognition systems are adapted us-

ing the improved supervision, i. e. the first-pass recognition re-

sult of SAT-GMM (18.9% WER). This way we measure the influ-
ence of the improved supervision on the recognition performance.

The corresponding results are shown in Tab. 3. It can be seen

F-cond. all F0 F1 F2 F3 F4 F5 FX
proportion 100.0 30.7 19.3 3.4 4.3 28.2 0.7 13.5

baseline 17.8 11.0 17.9 23.1 21.6 18.1 18.7 29.8

baseline+SAT 17.6 10.8 16.9 24.3 21.8 17.6 18.3 30.8

complex-target 17.3 10.9 16.8 21.2 21.9 17.4 15.7 29.5

simple-target 17.0 10.6 16.6 21.5 20.4 17.5 16.6 29.0
SAT-GMM 17.3 10.7 17.0 22.4 21.4 17.6 16.6 29.2

Table 3. Recognition results (WER) for the second recognition
pass on Eval98 using the improved supervision obtained with the

SAT-GMM system.

that there is no consistent influence of the improved supervision

on the recognition result: only for the baseline system and the
complex-target system there are significant relative reductions in
WER (4.8% and 3.4%, respectively). For all other systems, im-

provements are rather small. Thus, the difference between base-
line and baseline+SAT diminishes (see Tab. 3). However, the rel-
ative improvement of the simple-target system compared to base-
line+SAT remains the same as for the baseline supervision (3.4%).
Next, we compare the performances achieved by the differ-

ent types of target models. We found it noticeable that SAT-GMM
performs so well. Based on a very simple acoustic normalization

using a SAT-trained GMM, this recognizer leads to a slightly better
performance than baseline+SAT. Lowest overall WER is achieved
by the system simple-target for different supervisions. This result
is consistent with previous experiments for other types of speech

corpora [4]. A simple target model has the advantage, that it is not

able to represent too much speaker variability in its output densi-
ties when it is trained on unnormalized data and thus may force a

stronger normalization on the data. Thus, it seems reasonable to

us to prefer a simple target model over a complex one.

5. CONCLUSION AND FUTUREWORK

In this paper we described an alternative adaptive training pro-

cedure based on feature normalization, that allows to reduce un-

wanted variability at an early stage of the training procedure.

Moreover, if a GMM target model is used, the normalization can

become a part of the acoustic front-end. We obtained relative re-

ductions in WER of 7.8% in the first recognition pass over a con-

ventionally trained system and of 3.4% in the second recognition
pass over a SAT-trained system. In the future we will investigate

the use of specialized GMMs for different acoustic conditions, e. g.

low-bandwidth speech. Finally, we hope that the GMM-based

feature transformation turns out to be useful also in applications
where it is difficult or impossible to apply conventional two-pass

adaptation methods, e. g. neural network-based/segment model-

based recognizers, or real time applications like spoken dialogue

systems.
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