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Abstract

State-of-the-art statistical machine translation systems use hy-
potheses from several maximum a posteriori inference steps,
including word alignments and parse trees, to identify transla-
tional structure and estimate the parameters of translation mod-
els. While this approach leads to a modular pipeline of inde-
pendently developed components, errors made in these “single-
best” hypotheses can propagate to downstream estimation steps
that treat these inputs as clean, trustworthy training data. In
this work we integrate N -best alignments and parses by using a
probability distribution over these alternatives to generate pos-
terior fractional counts for use in downstream estimation. Using
these fractional counts in a DOP-inspired syntax-based transla-
tion system, we show significant improvements in translation
quality over a single-best trained baseline.

1 Introduction

Modern statistical machine translation systems are
becoming more accurate, but also more complex. To
cope with increased system complexity, it is con-
venient to carve systems into modules that can be
separately developed, improved, and tested. In this
paper, we explore the cost of such modularization
on overall system performance by increasing the
amount of information that flows between the train-
ing modules of one competitive machine translation
approach. Specifically, we consider the pipelining of
word alignment and syntactic parsing information
in the construction of transation rules and the esti-
mation of statistics used to decode with those rules.

As Chiang (2005) and Koehn et al. (2003) note,
lexical “phrase-based” translation models suffer
from sparse data effects when translating concep-
tual elements that span or skip across several source
language words. Phrase-based models also rely
on simple distance and lexical distortion models

to represent the reordering effects across language
pairs. Such models are typically applied over limited
source sentence ranges for reasons of model strength
(i.e., translation constraints that help prevent errors)
and decoding time efficiency (Och and Ney, 2004).

Hierarchically structured models as in Chiang
(2005) define weighted transduction rules, inter-
pretable as components of a probablistic syn-
chronous grammar (Aho and Ullman, 1969), that
represent translation and re-ordering operations. As
in monolingual parsing models, such rules make use
of nonterminal categories to extend the domain of
locality, beyond string-local effects, for resolving
ambiguity and making translation decisions. Chi-
ang (2005) uses a single nonterminal category (X),
while others use syntactically-motivated nontermi-
nal categories, thus bearing the “syntax-based” des-
ignation (Galley et al., 2006; Zollmann and Venu-
gopal, 2006). Chiang (2005) and Venugopal et al.
(2007) demonstrate efficient translation with proba-
bilistic synchronous CFGs (hereafter, PSCFGs), and
Marcu et al. (2006) present results that show sig-
nificant improvements in translation quality over a
phrase based system.

Current phrase-based and hierarchically struc-
tured systems rely on the output of a sequential
“pipeline” of maximum a posteriori inference steps
to identify hidden translation structure and estimate
the parameters of their translation models. The
first step in this pipeline typically involves learning
word-alignments (Brown et al., 1993) over parallel
sentence aligned training data. The outputs of this
step are the model’s most probable word-to-word
correspondences within each parallel sentence pair.



These alignments are used as the input to a phrase
extraction step, where multi-word phrase pairs are
identified and scored (with multiple features) based
on statistics computed across the training data. The
most successful methods extract phrases that adhere
to heuristic constraints (Koehn et al., 2003; Och and
Ney, 2004). Thus, errors made within the single-
best alignment are propagated (1) to the identifica-
tion of phrases, since errors in the alignment affect
which phrases are extracted, and (2) to the estima-
tion of phrase weights, since each extracted phrase
is counted as evidence for relative frequency esti-
mates. Methods like those described in Wu (1997)
and Marcu and Wong (2002) address this problem
by jointly modeling alignment and phrase identifi-
cation, yet have not achieved the same empirical re-
sults as surface heuristic based methods, or require
substantially more computational effort to train. See
also DeNero et al. (2006).

In this work we describe an approach that
“widens” the pipeline, rather than performing two
steps jointly. We present N -best alignments and
parses to the downstream phrase extraction algo-
rithm and define a probability distribution over these
alternatives to generate expected, possibly fractional
counts for the extracted translation rules, under that
distribution. These fractional counts are then used
when assigning weights to rules.

This technique is directly applicable to both flat-
and hierarchically-structured translation models. In
syntax-based translation, single-best target language
parse trees (given by a statistical parser) are used
to assign syntactic categories within each rule, and
to constrain the combination of those rules. Deci-
sions made during the parsing step of the pipeline
affect the choice of nonterminals used for each rule
in the PSCFG. Presenting N -best parse alternatives
to the rule extraction process allows the identifica-
tion of more diverse structures for use during trans-
lation and, perhaps, better generalization ability.

We integrate N -best alignments and N -best
parses into the PSCFG grammar induction pro-
cess within syntax-augmented machine translation
estimation suggested in Zollmann and Venugopal
(2006). We first recapture their approach more for-
mally in Section 2, and then, in Section 3, extend
their grammar extraction method to integrate rules
extracted from N -best alignments and parses and al-

low the posterior fractional counts to influence the
rule weights.

In Section 4, we show how the widened pipeline
improves translation performance on a limited-
domain domain speech translation task, the IWSLT-
06 Chinese-English data track (Paul, 2006). We ex-
plore the impact on translation quality when con-
sidering lower probability alignments and parses
from the N -best lists (according to their respective
models) and show significant improvements when
combining these alternatives under our estimation
method.

2 Synchronous Grammars for SMT

Probabilistic synchronous context-free grammars
(PSCFGs) are defined by a source terminal set
(source vocabulary) TS , a target terminal set (target
vocabulary) TT , a shared nonterminal set N and in-
duce rules of the form

X → 〈γ, α,∼, w〉

where

• X ∈ N is a nonterminal,
• γ ∈ (N ∪TS)∗ is a sequence of nonterminals and

source terminals,
• α ∈ (N ∪TT )∗ is a sequence of nonterminals and

target terminals,
• the count #NT(γ) of nonterminal tokens in γ is

equal to the count #NT(α) of nonterminal tokens
in α,

• ∼: {1, . . . ,#NT(γ)} → {1, . . . ,#NT(α)} is a
one-to-one mapping from nonterminal tokens in γ
to nonterminal tokens in α, and

• w ∈ [0,∞) is a nonnegative real-valued weight
assigned to the rule.

In our notation, we will assume ∼ to be implicitly
defined by indexing the NT occurrences in γ from
left to right starting with 1, and by indexing the NT
occurrences in α by the indices of their correspond-
ing counterparts in γ. Syntax-oriented PSCFG ap-
proaches often ignore source structure, instead fo-
cusing on generating syntactically well-formed tar-
get derivations. Chiang (2005) uses a single non-
terminal category, Galley et al. (2006) use syntac-
tic constituents for the PSCFG nonterminal set, and



Zollmann and Venugopal (2006) take advantage of
CCG (Steedman, 1999) inspired “slash” and “plus”
categories.

We now describe the identification and estimation
of PSCFG rules from parallel sentence aligned cor-
pora under the framework proposed by Zollmann
and Venugopal (2006), followed by our extensions
to integrate evidence from N -best alignments and
parses.

2.1 Grammar Induction
Zollmann and Venugopal (2006) describe a pro-
cess to generate a PSCFG given parallel sentence
pairs 〈f, e〉, a parse tree π for each e, the maxi-
mum a posteriori word alignment a over 〈f, e〉, and
a set of phrase pairs Phrases(a) identified by any
alignment-driven phrase induction technique such as
e.g. (Och and Ney, 2004).

Each phrase in Phrases(a) is first annotated with
a syntactic category to produce initial rules, where γ
is set to the source side of the phrase, α is set to the
target side of the phrase, and X is assigned based on
the corresponding target side span in π. If the target
span of the phrase does not match a constituent in
π, heuristics are used to assign categories that corre-
spond to partial rewriting of the tree. These heuris-
tics first consider concatenation operations, forming
categories like “NP+VP”, and then resort to CCG
style “slash” categories like “NP/NN.” Preference
for the concatenation operations over the slash cat-
egories is based on the assumption that categories
closer to the leaves of the tree are more accurate
and more strongly tied to the words than categories
higher up the tree.

To illustrate this annotation process, we consider
the following French-English sentence pair and se-
lected phrase pairs obtained by phrase induction on
an automatically produced alignment a:

f = il ne va pas

e = he does not go

il : he

va : go

ne va pas : not go

il ne va pas : he does not go

The alignment a with the associated target side
parse tree is shown in Fig. 1 in the alignment visual-

ization style defined by Galley et al. (2006). Match-
ing the target span of each phrase with the parse π,
we generate the following initial rules.

PRP → il, he

VB → va, go

RB+VB → ne va pas, not go

S → il ne va pas, he does not go

Note that the third rule illustrates the use of concate-
nation categories to identify syntactic categories.
These initial rules form the lexical basis for gener-
alized rules that include labeled syntactic categories
in γ and α. Following the Data-Oriented Parsing
(Scha, 1990) inspired rule generalization technique
proposed by Chiang (2005), one can now general-
ize each identified rule (initial or already partially
generalized)

N → f1 . . . fm/e1 . . . en

for which there is an initial rule

M → fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to
obtain a new rule

N → f1 . . . fi−1Mkfu+1 . . . fm/e1 . . . ej−1Mkev+1 . . . en

where k is an index for the nonterminal M that in-
dicates the one-to-one correspondence between the
new M tokens on the two sides (it is not in the space
of word indices like i, j, u, v, m, n). The recursive
form of this generalization operation allows the gen-
eration of rules with multiple nonterminal symbols.
Note that since we only generalize over initial rules,
this operation has polynomial runtime as a function
of |Phrases(a)|.

The initial rules listed above can be generalized to
additionally extract the following rules from f, e.

S → PRP1 ne va pas , PRP1 does not go

S → il ne VB1 pas , he does not VB1

S → il RB+VB1, he does RB+VB1

S → PRP1 RB+VB2, PRP1 does RB+VB2

RB+VB → ne VB1 pas , not VB1



Fig. 2 uses regions to identify the labeled, source
and target side span for all initial rules extracted on
our example sentence pair and parse. Under this
representation, the generalization operation can be
viewed as a process that selects a region, and pro-
ceeds to subtract out any sub-region to form a gen-
eralized rule.

Note that its is possible to extract the same rule
from a given sentence multiple times, making esti-
mates derived from counts over these rules incon-
sistent. In this work, we do not double-count any
rules that can be extracted multiple times from one
sentence pair, even if these multiple rules repre-
sent structures found in different parts of the sen-
tence. This decision biases our counting against
rules that represent high frequency words. We pre-
fer this option rather than over-counting rules that
represent low frequency words, since differences in
low-frequency estimates have greater effect on the
translation model, which is log-linear, as we will see
in the following section.
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Figure 1: Alignment graph (word alignment and target parse
tree) for a French-English sentence pair.

2.2 Decoding
Given a source sentence f , the translation task under
a PSCFG grammar can be expressed analogously
to monolingual parsing with a CFG. We find the
most likely derivation D of the input source sentence
while reading off the English translation from this
derivation:

ê = tgt

(
arg max

D:src(D)=f
p(D)

)
(1)

il 1 ne 2 va 3 pas 4

he 1

does 2

not 3

go 4

�

�i

�
�

9

S

RB+VB

VB
VP

NP+AUX

NP

; Figure 2: Spans of initial lexical phrases with respect to f, e.
Each phrase is labeled with a category derived from the tree in
Figure 1.

where tgt(D) refers to the target terminal symbols
generated by the derivation D and src(D) refers to
the source terminal symbols spanned by D.

Our distribution p over derivations is defined by a
log-linear model. The probability of a derivation D
is defined in terms of the rules r that are used in D:

p(D) =
pLM (tgt(D))λLM ×

∏
r∈D

∏
i φi(r)λi

Z(λ)
(2)

where φi refers to features defined on each rule,
pLM is a g-gram LM probability applied to the tar-
get terminal symbols generated by the derivation D,
and Z(λ) is a normalization constant chosen such
that the probabilities sum up to one. The computa-
tional challenges of this search task (compounded by
the integration of the language model) are addressed
elsewhere (Chiang, 2007; Venugopal et al., 2007).
All feature weights λi are trained in concert with the
language model weight via minimum-error training
(Och, 2003). Here, we focus on the estimation of
the feature values φ during the grammar induction
process. The feature values are statistics estimated
from rule counts.

2.3 Feature Value Statistics
The features φ represent multiple criteria by which
the decoding process can judge the quality of each
rule and, by extension, each derivation. We in-
clude both real-valued and boolean-valued features
for each rule. The following probabilistic quantities
are estimated and used as feature values:

• p̂(r| lhs(X)) : Probability of a rule given its l.h.s



category
• p̂(r| src(r)) : Probability of a rule given its source

side
• p̂(r| tgt(r)) : Probability of a rule given its target

side
• p̂(ul(src(r)),ul(tgt(r))|ul(src(r)) : Probability

of the unlabeled source and target side of the rule
given its unlabeled source side.

• p̂(ul(src(r)),ul(tgt(r))|ul(src(r))) : Probability
of the unlabeled source and target side of the rule
given its unlabeled target side.

where lhs returns the left-hand-side of a rule, src re-
turns the source side γ, and tgt returns the target side
α of a rule r. The function ul removes all syntactic
labels from its arguments, but retains ordering no-
tation. For example, ul(NP+AUX1does not go) =
21 does not go.

The last two features are extensions to the feature
set suggested by (Zollmann and Venugopal, 2006).
They represent the same kind of relative frequency
estimates commonly used in phrase based systems.
The ul function allows us to calculate these esti-
mates for rules with nonterminals as well.

To estimate these probabilistic features, we use
maximum likelihood estimates based on counts of
the rules extracted from the training data. For
example, p̂(r|lhs(r)) is estimated by computing
#(r)/#(lhs(r)), aggregating counts from all ex-
tracted rules.

As in phrase-based translation model
estimation, φ also contains two lexical
weights p̂w(lex(src(r))| lex(tgt(r))) and
p̂w(lex(tgt(r))| lex(src(r))) (Koehn et al., 2003)
that are based on the lexical symbols of γ, α. These
weights are estimated based on an pair of statistical
lexicons that represent p̂(s|t), p̂(t|s), where s and t
are single words in the source and target vocabulary.
These word-level translation models are typically
estimated by maximum likelihood, considering the
word-to-word links from “single-best” alignments
as evidence.

φ also contains several boolean and count fea-
tures: the rule is purely lexical in α and γ; the rule
is purely non-lexical in α and γ, the rule has sig-
nificant differences in the number of lexical source
and target words; and the rule generates more or less
target words than other derivations. The last two

features are commonly used in phrase based sys-
tems to ensure that the target translations are of suf-
ficient length to perform well against n-gram auto-
matic translation evaluation metrics like BLEU (Pa-
pineni et al., 2002).

3 N -best Evidence

The rule extraction procedure described above relies
on high quality word alignments and parses. The
quality of the alignments affects the set of phrases
that can be identified by the heuristics in (Koehn et
al., 2003). In addition, alignment quality plays a role
in determining the set of valid compositions that can
create complex rules, which represent both transla-
tion as well as reordering operations across language
pairs. The quality of the parses affects the syntac-
tic categories assigned to each complex rule and its
respective composed arguments. These categories
play an important role in constraining the decoding
process to grammatically feasible target parse trees.

Quirk and Corston-Oliver (2006) show improve-
ments in translation quality when the quality of pars-
ing is improved by adding additional training data
within the “treelet” paradigm introduced by Quirk
et al. (2005). Koehn et al. (2003) show that transla-
tion quality in a phrase based system does not vary
significantly when increasing the complexity of the
model used for alignment (ranging from IBM model
1 through 4), but that increasing the amount of paral-
lel training data does improvement alignment qual-
ity.

Our approach considers alignment and parse qual-
ity for a fixed training data size and model complex-
ity. Variance in quality is judged by the models that
generates, respectively, the alignments and parses,
and is reflected in the probabilities assigned to the
N -best alternatives. Informal examination of the
highest probability alignment and target parse tree
reveals two important arguments in favor of inte-
grating N -best hypotheses into the rule extraction
process. Firstly, there are often multiple reasonable
alignments and parses that can model the bilingual
sentence pair and the target sentence. We can expect
that rules extracted from more diverse, correct evi-
dence can improve translation quality on new sen-
tences, since more (good) rules will be extracted.
Secondly, where there is a high degree of agreement



across each alternative in the N -best lists, the re-
maining differences between alternatives are often
the source of error or ambiguity.

Attempts to reduce the use (in decoding) of rules
extracted from sections of the alignment and parse
that are not consistent with other alternatives could
reduce errors made during translation. Put another
way, the more complete hypotheses a word-link or
constituent appears in, and the more probable those
hypotheses, the more we should trust rules that use
these links.

Our approach towards the integration of N -best
evidence into the grammar induction process allows
us to take advantage of the diversity found in the N
best alternatives, while reducing the negative impact
of errors made in these alternatives.

3.1 Counting from N -Best Lists
In this work we propose extraction of complex rules
over N -best alignments and N ′-best parses, mak-
ing use of probability distributions over these alter-
natives to assign fractional posterior counts to each
complex rule that can be extracted.

Taking the alignment N -best list to define a pos-
terior distribution over alignments and the parse N ′-
best list to define a posterior over parse trees, we
can estimate the posterior probability of each rule
that might be extracted for each (alignment, tree)
pair. Assuming that the alignment module gives
alignments a1, ..., aN , with posterior probabilities
p(a1 | e, f), ..., p(aN | e, f), we approximate the
posterior by renormalizing:

p̂(ai) = p(ai | e, f)

/
N∑

j=1

p(aj | e, f) (3)

The same is applied to the parser’s N ′-best parses,
π1, ..., πN ′ .

Given a single alignment-parse pair, we can ex-
tract rules as described in Section 2.1. Our ap-
proach is to extract rules from the cross-product
{a1, ..., aN} × {π1, ..., πN ′}, incrementing the par-
tial count of each rule extracted by p̂(ai) · p̂(πj). A
rule r’s total count for the sentence pair 〈f, e〉 is:

N∑
i=1

N ′∑
j=1

p̂(ai)·p̂(πj)·


1 if r can be extracted from

e, f , ai, πj

0 otherwise
(4)

In practice, this can be computed more efficiently
through structure-sharing. Note that if N = N ′ = 1,
this counting method generalizes the original count-
ing method.

Note that GIZA++ (Och and Ney, 2003) can infer
the N -best word alignments under IBM Model 4 and
the Charniak parser (Charniak, 2000) outputs its N ′-
best parses, with their associated probabilities.

Instead of using the simple counts for rules given
the derivation inferred using the maximum a pos-
teriori estimated alignment and parse (a1, π1), we
now use the expected counts under the approximate
posterior. These posteriors encode (in a principled
way) a measurement of confidence in substructures
used to generate each rule. Possible rule instances
supported by more and more likely alignments and
parses should, intuitively, receive higher counts (ap-
proaching 1 as certainty increases, supported by
more and higher-probability alternatives), while rule
instances that rely on low probability or fewer align-
ments and parses will get lower counts (approaching
0 as certainty increases).

3.2 Refined Alignments

Work by Och and Ney (2004) and Koehn et al.
(2003) demonstrates the value of generating word
alignments in both source-to-target and target-to-
source directions in order to facilitate the extraction
of phrases with many-to-many word relationships.
We follow Koehn et al. (2003) in generating a re-
fined bidirectional alignment using the heuristic al-
gorithm “grow-diag-final” described in that work.
Since we require N -best alignments, we first ex-
tract N -best alignments in each direction, then per-
form the refinement technique to all N2 bidirec-
tional alignment pairs. By taking the geometric
mean of the probabilities of the alignments in each
direction, we can assign probabilities to the resulting
refined alignments and remove all duplicate align-
ments that came about due to the refinement process.
We then select the top N alignments from this set of
refined alignments. The geometric mean could of
course be tuned to favor one direction; we did not
explore such tuning.



4 Translation Results

4.1 Experimental Setup

We present results on the IWSLT 2006 Chinese-to-
English translation task, based on the Full BTEC
corpus of travel expressions with 120K parallel sen-
tences (906K source words and 1.2M target words).
The evaluation test set contains 500 sentences with
an average length of 10.3 Chinese words. Word
alignment was trained using the GIZA++ toolkit,
and 100 parses generated by the Charniak (2000)
parser, without additional re-ranking.1 100-best
alignments were generated from source to target and
target to source, refined as described above and then
made unique.

Initial phrases were identified using the heuris-
tics proposed by Koehn et al. (2003). Rules were
extracted using the toolkit made available in Zoll-
mann and Venugopal (2006) and modified to han-
dle N -best alignments and posterior counting. Note
that lexical weights (Koehn et al., 2003) as described
above are assigned to φ for rule based on the based
on “single-best” word alignments. Rules that receive
zero probability value for their lexical weights are
immediately discarded, since they would then have a
prohibitively high cost when used during translation.
Rules extracted from single-best evidence as well as
N best evidence can be discarded in this way.

The n-gram language model is trained on the tar-
get side of the parallel training corpus and trans-
lation experiments run with the decoder and MER
trainer available in the same toolkit. We use the
Cube-Pruning (Chiang, 2007) option for translation
experiments.

4.2 Cumulative (N,N ′)-Best

We measure translation quality using the BLEU
metric as we vary the size of N and N ′ for align-
ments and parses respectively. Each value of N im-
plies that the first N alternatives have been consid-
ered when building the grammar. For each grammar
we also consider the number of rules (after selecting
only those relevant to the development and test data)
as well as the number of syntactic categories repre-
sented in the grammar. We also note the number of

1Reranking might be used to change estimates of p̂(τi), but
would not change the set of rules extracted—only the fractional
counts.

seconds required to translate the evaluation data.
Table 1 summarizes results across each grammar

configuration for the IWSLT limited domain task.
Due to time and resource constraints, we limit our
evaluation to varying the number of alignments and
the number of parses used separately. We limit N ′,
the number of alternative parses considered, to 10
due to the dramatic increases in runtime incurred by
adding parse trees. This result is as expected: us-
ing alternative parse information directly increases
the number of nonterminals available in the gram-
mar. As mentioned in Chiang (2007), the number of
nonterminals is the dominant factor in parsing run-
time after the n-gram language model is integrated
into search.

The baseline result, where the “single-best”
pipeline is used, achieves a development set score
of 23.67% and a test set score of 19.78%. On
both development and test data, methods that inte-
grate additional evidence from the N -best alterna-
tives achieve significant improvements (1.29 points)
over the baseline. There is more impact from con-
sidering alternative alignments rather than parses, at
least at the levels considered here. In both cases,
the number of nonterminals increases with the num-
ber of additional alternatives considered, increasing
runtime as expected. Scores on development data
using alternative alignments show a clearer trend of
improvements as more alternatives are considered.
This effect is likely due to parameters λ being opti-
mally learned on development data to make the best
use of additional rules from the alternative evidence.
Nevertheless, all configurations of N -best evidence
do show marked improvement over the “single-best”
baseline.

4.3 Widening the Lexicon

As noted above, rules that have no support from
the lexical weight features are immediately dis-
carded. The underlying word based models p̂(s|t)
and p̂(t|st) are estimated based on “single-best”
alignments. In the spirit of softening our pipelined
decisions, we add an additional pair of lexical
weights (in each direction) to φ based on the IBM
Model 4 tables output by GIZA++ at the end of
its training. Using these IBM Model 4 weights al-
lows a significantly larger number of rules to be
added to the grammar since more rules have non-



N,N ′ #Rules #NTs Dev Test Time
1, 1 300K 1771 23.7 19.8 1145

1..5, 1 490K 1894 24.3 21.0 2086
1..10, 1 582K 1947 24.3 20.1 2563
1..25, 1 747K 2026 24.4 20.1 3840
1..50, 1 911K 2072 24.8 21.1 5132
1, 1..5 616K 2393 23.9 20.0 4291

1, 1..10 850K 2633 24.0 20.1 7237

Table 1: Grammar statistics and translation quality (IBM-
BLEU) on development and test set and when integrating N -
best alignments an N ′-best parses. Decoding time in seconds is
on all 500 sentences

N,N ′ #Rules #NTs Dev Test Time
1, 1 311K 1781 23.7 21.2 1,369

1..10, 1 1m 2212 26.0 22.2 13,406
1..50, 1 2.3m 2526 26.2 21.4 53,492
1, 1..10 652K 2407 25.9 X 13,396

Table 2: Grammar statistics and translation quality when inte-
grating N -best alignments an N ′-best parses using IBM Model
4 lexical weights. All missing values (X) will be available in
the final version.

zero lexical weight. Table 2 summarizes grammar
statistics and translation quality for grammars that
use these “widened” lexicons. There are signifi-
cantly more rules used in all the N -best evidence
based grammars as a result of using the Model 4
lexicon. Despite a modest increase in the num-
ber of rules used in the baseline system, translation
quality is significantly improved by using the IBM
Model 4 lexical weight rather than models based on
single-best alignments only. The grammar built on
N = 10, N ′ = 1 achieves the best results on evalu-
ation data, again more than 1 point over the baseline
result. Results with N = 50, N ′ = 1, however,
show signs of parameter over-fitting to the develop-
ment data. We believe that this is due to the sheer
number of available rules that can be used to gener-
ate translation alternatives for MER training—there
are too many parameters and too little data to esti-
mate them.2

2This effect could be mitigated during the normalization
(Section 3.1) by controlling the entropy of the resulting distri-
bution over alternative alignments. We could make the distribu-
tions over N -best lists “peakier” to increase the penalty of using
rules from low-probability alignments during translation.

Figure 3: Top rules extracted by our method, but not the base-
line.

4.4 Grammar Rules

Figure 3 shows the most frequently occurring rules
that exist only in the best performing N = 10, N ′ =
1 grammar, and not in the baseline (Model-4 lex-
icon) grammar. We show the estimated counts on
these rules as well as their source, target and l.h.s.
These rules are particularly interesting when con-
sidering the domain of this translation task. The
source side of the training data contains no punctua-
tion (since it is transcribed speech), while the target
side does (since they were manually generated trans-
lations). The system therefore attempts to generate
punctuation during translation. Consider the first ex-
ample, where the Chinese word for “please” (often
found at the beginning of a sentence) is aligned to
the English “please .” (at the end of the sentence as
indicated by the punctuation). This rule is extracted
from a lower-probability alignment with high lev-
els of distortion. This pattern was not seen in any
single-best alignments.

5 Conclusion

In this work we have demonstrated the feasibility
and benefits of widening the MT pipeline to in-
clude additional evidence from N -best alignments
and parses. We integrate this diverse knowledge un-
der a principled model that uses a probability distri-
bution over these alternatives. We achieve signifi-
cant improvements in translation quality over gram-
mars built on “single-best” evidence alone.
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