
The CMU-UKA Syntax Augmented Machine Translation System for IWSLT-06

Andreas Zollmann, Ashish Venugopal, Stephan Vogel, Alex Waibel

interACT
University of Karlsruhe, Germany / Carnegie Mellon University, U.S.A.

{zollmann,ashishv,vogel,ahw}@cs.cmu.edu

Abstract
We present the CMU-UKA Syntax Augmented Machine
Translation System that was used in the IWSLT-06 evalua-
tion campaign. We participated in the C-Star data track us-
ing only the Full BTEC corpus, for Chinese-English trans-
lation, focusing on transcript translation. We applied tech-
niques that produce true-cased, punctuated translations from
non-punctuated Chinese transcripts, generating translations
which score higher against the Official metric than against
the lower-cased, punctuation removed metric. Our results
demonstrate the impact of syntax and hierarchy based mod-
els for speech transcript translation.

1. Introduction
As [1] and [2] note, phrase-based models suffer from sparse
data effects when required to translate conceptual elements
that span or skip across several words, and distortion based
re-ordering techniques tend to limit their range of operation
for reasons of efficiency and model strength [3]. Syntax
driven [4], [5] and hierarchical translation models [1] model
structured re-ordering constraints and extend the domain of
locality in the decoding process. Systems such as [6] and [7]
demonstrate effective decoding using these models.

For the IWSLT-06 evaluation, we applied syntax aug-
mented translation as per [7] to the speech translation task,
using the only Full BTEC corpus to model translational
equivalence. We begin by extracting lexical phrases as per
[2] as the basis for our syntax augmented translation rules.
We annotate and generalize these phrases by parsing the tar-
get side of the training data with the Stanford Parser [8]
(trained on the Penn Treebank). Our results indicate steady
improvements as we introduce hierarchy and syntax into the
translation process despite the domain mismatch with the En-
glish parser.

As defined in the evaluation’s Official Specifications,
translations are evaluated considering case and punctuation
markers, artifacts not typically present in Chinese ASR tran-
scripts. We incorporate the generation of punctuation di-
rectly into the translation process, learning translation rules
that represent case and punctuation decisions. Our Official
evaluation results demonstrate the effectiveness of these ap-
proaches; our submission achieved higher performance when
the system output was evaluated with punctuation and case

than in the lower-cased, punctuation-free evaluation. This re-
sult is especially relevant considering the presence of multi-
ple sentences (which should be punctuation-separated in En-
glish) within each speech transcript utterance.

We begin by summarizing the syntax augmented rule ex-
traction process from [7] and the decoding settings used to
train the model parameters to maximize performance [9] on
the BLEU metric [10]. We provide a detailed description of
the data-processing used to generate our evaluation submis-
sion, and demonstrate the impact of syntax for the IWSLT-06
speech translation task.

2. Syntax Augmented Translation
Traditional phrase-based translations serves as the lex-
ical foundation for the syntactic synchronous grammar
(SynCFG) presented in [7]. Syntactic, since its nonterminals
are syntactic categories derived from parsing the target (En-
glish) side of the parallel training corpus, and synchronous
because they define operations to derive the source and tar-
get language simultaneously. We train a phrase based trans-
lation model as in [2] on the bilingual training data, and as-
sociate the word alignment graph for each sentence pair with
the highest probability parse of the target sentence. We ob-
tain parse trees from the Stanford Parser pre-trained on the
Penn Treebank [8].

Using the notation from [1], we aim to construct a syn-
chronous grammar of the form

X → 〈λ, α,∼〉
where λ = f1 . . . Yi . . . fm is a sequence of nonter-

minals Yi and source language terminals fk and α =
e1 . . . Yj en is a sequence containing the same nonter-
minals Yi as well as target language terminals ek. The re-
lation ∼ defines a one-to-one correspondence between non-
terminal occurrences Y across λ and α. Target terminals are
the English words of the system output, and our nonterminals
are target language syntactic categories corresponding to the
Penn Treebank nonterminal set along with extensions. Under
this notation, phrase table entries represent purely lexical λ
and α.

To produce rules of the form described above, we anno-
tate the initial lexical rules (the phrase-table) with syntactic
productions (left-hand side of the rule) based on the parse

trees available for the target side of the corpus. We perform
the phrase extraction from [2] for each sentence individually,
identifying phrases based on the learned word alignment, and
associating the target side of these phrases with constituent
labels from the corresponding target parse tree. Details are
provided below.

2.1. Annotation

We run the freely available phrase extraction system pro-
vided by Phillip Koehn for the NAACL-2006 Workshop
on Statistical Machine Translation, generating initial word
alignments using the grow-diag-final method. In order to
identify phrases with their corresponding sentences (required
to associate the target side parse tree), we insert sentence
separator marks between each line of the source, target and
alignment file. Calling phrase-extract (a binary provided
in the workshop tools) with these marked files produces a
phrase table with separators between each set of phrases ex-
tracted from a sentence.

For the set of phrases extracted for each sentence, we
consider the corresponding parse tree for the whole target
sentence. For each source phrase-pair f1 . . . fm/e1 . . . en,
we annotate this phrase-pair with the constituent that spans
e1 . . . en in the target side parse tree.

As an extension to the nonterminal set provided by the
Penn Treebank, we consider the CCG nonterminal set pro-
posed by [11]. Under this approach, rules can be assigned
partially formed categories, like DT\NP , indicating a con-
stituent that forms a noun-phrase, but is missing its deter-
miner at the left. [12] demonstrates the importance of con-
sidering phrases not corresponding to pure syntactic con-
stituents in translation, and in [13], we demonstrate the value
of using extended categories in our translation system. If
neither a Penn Treebank or CCG constituent can be found
for e1 . . . en, we associate a generic nonterminal symbol _X
with this rule, allowing it to still take part in hierarchically
motivated synchronous derivations.

2.2. Generalization

We generalize the annotated phrases described above to in-
clude nonterminals on the target side, which can be instanti-
ated during decoding. We adhere to [1] to recursively gener-
alize each existing rule

N → f1 . . . fm/e1 . . . en

for which there is an initial rule

M → fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to obtain a new
rule

N → f1 . . . fi−1Mkfu+1 . . . fm/e1 . . . ej−1Mkev+1 . . . en

where k is a new index for the nonterminal M that expresses
the one-to-one correspondence between the new occurrence

of M on the source side and the corresponding one on the
target side.

This approach generates rules comparable to the
“Model2C” phrases in [6] assuming consistent initial phrase
pairs from [2]. The target side of each rule is flattened before
relative frequencies are calculated.

2.3. Rule Preparation

The set of rules resulting from the process above is more than
10 times the size of the initial lexical rules / phrase pairs used
to create them. As an initial pruning step, we remove rules
whose source-conditioned relative frequency is below a spec-
ified threshold, as well as those that include source terminal
elements that do not occur in the development or test data.
In practice we perform this filtering online during extraction.
Also, generalized rules that occur only once are immediately
discarded, but lexical rules (those that contain no nontermi-
nal symbols) are never pruned away.

To allow derivations that do not comply with the syntac-
tic structure learned from the rule extraction phase, we use
“glue” rules as in [1]. The glue rules allow any nontermi-
nal production to participate in sequential combination with
other rules, in a left-bracketing manner. Unknown words
are assigned production categories based on common occur-
rence. Specifically, we add the following rules to the learned
grammar.

• S → N,N for all nonterminals N in the grammar

• G → N,N for all nonterminals N in the grammar

• S → S G, S G

• {NNP, JJ, RB, NN} → UNK, UNK

Glue rule counts as used in the log-linear model (Sec-
tion 3.2) are incremented for the S → N,N and S →
S G, S G rules, thereby counting the number of chunks

used in sequential productions.

2.4. Extracted Rules

After filtering for development and test set, we are left with
290,325 rules in the syntactic rule set, and 38,576 rules in
the hierarchical rule extraction variant. The number of actual
occurring nonterminals in our filtered syntactic grammar (be-
fore language model intersection) is 1618, due to the CCG
extension on top of the 75 original Penn Treebank nontermi-
nals.

Table 1 gives statistics and examples of the types of rules
occurring in our syntactic rule set.

3. Decoding
3.1. Parsing Strategy

We apply the SynCFG to an input source sentence by using a
bottom-up, CYK+ [14] style decoder which does not require

Rule type N.o. rules N.o. rule instances Frequent example
Total 290,325 4,891,724

Abstract (i.e., no terminals) 75,555 2,234,685 PUNCT\SQ → PRP MD VP, MD PRP VP
Lexical / initial (i.e., only terminals) 18,104 554,091 �ïå, May I

Mixed (both terminals and NTs) 196,666 2,102,948 MD+PRP → PRP ý, Could PRP
Regular syntactic (containing only regular NTs) 19,547 818,240 PRP →�, I

Extended synt. (containing only regular or CCG NTs) 106,243 1,814,699 SQ → PUNCT\SQ �, ? PUNCT\SQ
X rules (containing the X nonterminal) 164,535 2,258,785 X →� X, . I X

With reordering 28,840 467,028 SQ → PRP MD VP �, ? MD PRP VP
no substitution site (i.e., lexical) 18,104 554,091 (see lexical above)

1 substitution site pair 28,840 467,028 MD+PRP → PRP ý, can PRP
2 substitution site pairs 90,105 1,877,373 SQ →` MD VP �, ? MD you VP
3 substitution site pairs 147,499 1,606,745 X → X1 CD X2, X1 CD X2

Table 1: Rule statistics after filtering for dev+test set

pre-binarization of the grammar. A target n-gram language
model is intersected with the SynCFG rules during the de-
coding process. A probabilistic beam is applied to mitigate
the combined effects of the large nonterminal set intersected
with the n-gram language model. The Viterbi parsing pro-
cess results in a “ S” (sentence) rooted most probable parse
tree. Traversing its nodes in a left-to-right, depth-first man-
ner yields the corresponding translation.

3.2. Log-linear model

We employ a log-linear model to select the highest probabil-
ity (lowest neg-log prob) target derivation tree for the given
source sentence. We model most aspects of the translation
process by augmenting the SynCFG grammar with features
that accumulate during decoding. The only feature explicitly
introduced during decoding is the n-gram language model.
Given a source sentence f to translate with our SynCFG, we
model the decoding process as a search through the deriva-
tion space of f , where the lowest cost derivation encodes a
target translation sequence in α. We define our translation
model in log space (dealing with costs, not probabilities) as

arg min
R0◦···◦Rn

lm(tgtR0◦···◦Rn
) +

m∑
i=1

λi

n∑
j=1

(vj)i . (1)

where R1 ◦ · · · ◦ Rn is a derivation for f and v1, . . . , vn ∈
Rm are the feature vectors of the applied rules R1, . . . , Rn.
Further, lm(tgtR0◦···◦Rn

) denotes the neg log probability of
the target language sequence represented by the derivation
R0 ◦ · · · ◦Rn, and λ1, . . . , λm are the parameters of the log-
linear model.

Each rule in the grammar is augmented with the follow-
ing features:

• Lexical weights as described in [2]

• Neg-log relative frequencies:

– left-hand-side-conditioned

– target-phrase-conditioned

– source-phrase-conditioned

• Counters: n.o. rule applications, n.o. target words

• Flags:

– IsPurelyLexical (i.e., contains only terminals)

– IsPurelyAbstract (i.e., contains only nontermi-
nals)

– IsXRule (i.e., non-syntactical span),

– IsGlueRule

• Penalties:

– Rareness penalty: exp(1− RuleFrequency)

– Unbalancedness penalty: relative to ratio of
source to target corpus length

Model weights for these features within the log-linear
model are trained against the BLEU metric with Minimum
Error Rate (MER) training as in [9], using the implementa-
tion provided from [15]. Given the large number of features
represented in the model and the greedy search process used
in [9] we perform feature selection during the MER training
process. We generate unique target N-Best derivations for
MER training using the process described in [13].

4. Data Preparation
We present our results using only the Full BTEC corpus as
made available in the C-STAR evaluation track. The 163K
parallel sentence pairs cover 906 thousand source words and
1.2 million target words. Both sides of the training data
include punctuation, and the target side is provided with
case information. The development and test corpora for
the IWSLT-06 corpora contain no punctuation on the source
side, and the Official evaluation track preserves both case and
punctuation.

To account for these differences between training and test
conditions, we apply a set of heuristic processing operations
to learn translation models that directly generate true-cased,
punctuated target output from non-punctuated source input.

While the development and test data are provided with
source language word segmentation, the training data is not
pre-segmented. We apply the Stanford Chinese segmenter on
the source training data as well as the development and test
data to maintain consistent segmentation.

We also note the presence of a large number of numeric
or ordinal terms in the development data, which typically
lead to unreliable language model estimates (due to the spar-
sity in encountered numeric forms). We handle source and
target number forms as described below.

4.1. Case Information

Word alignment and subsequent phrase and rule extraction
rely on well estimated lexical probabilities; a requirement
that is often strained in limited data scenarios with true-cased
data. Common solutions include training translation and lan-
guage models on lower-cased text, generating system output
in lower-case and then applying a true-case system like [16],
or training all models in true-case.

We take a intermediate approach, based on the premise
that the real source of sparsity in the direct true-case ap-
proach comes from the first word of the sentence being
upper-cased due to its position. Upper-case words used
within the sentence (rather than in the first position) tend to
be consistently cased across the corpus (a notable exception
being “May” vs “may”).

For each first word of the target side of the corpus we
estimate its most common case in the corpus (ignoring first
word occurrences). If the most common case is lower, we
lower case the word, otherwise we leave it as upper case.
Models are trained on this mixed corpus, and we expect that
phrase pairs with upper-cased target word are well estimated.
Our algorithm’s casing decisions for the 15 most frequent
upper-case words in the training corpus are given in Table 2.

Our approach avoids maintaining mixed case versions of
frequent words that occasionally occupy the first word posi-
tion (words like “The” or “Is”). As a post processing step
we simply upper-case the first words of each sentence, ac-
counting for multiple-sentence utterances using the punctua-
tion approach described in the next subsection.

For an upper-case word to be incorrectly output in lower-
case during translation, that word instance would have to oc-
cur as first word of the training sentence from which the cor-
responding rule / phrase-pair was extracted, and the occur-
rence frequency of the upper-case word in the training cor-
pus would have to be lower than the frequency of the lower-
case variant, and the word would have to occur as a non-first
word in the translation output sentence (because first-words
are upper-cased during post-processing anyhow).

Similarly, for a lower-case word to be incorrectly output
in upper-case, the word would need to come from a first-word

English word Frequency Fr. of lower-case variant
I 21611 10

Japan 1939 0
Japanese 1816 0

Tokyo 813 0
Hotel 703 1166
Mr. 691 0
New 487 315
York 438 0

English 372 0
Boston 318 0

Park 295 147
A 275 31786

Chicago 263 0
Street 233 506

Airlines 232 29

Table 2: Most frequent upper-case words in the training cor-
pus (disregarding sentences’ first-words). Words for which
the lower-case variant is preferred are bold-faced.

in the training corpus, its upper-case instances would need to
dominate the lower-case instances, and it could not be the
first word of the output sentence (otherwise the upper-case
spelling would be correct).

4.2. Punctuation Generation

Speech transcript translation typically encounters
punctuation-free source sentences, while target output
is preferred in punctuated form. Following the observation
that punctuation generation is typically a function of target
word context, we leave punctuation marks in the target
side of the training corpus, while removing all punctuation
marks from the source side of the data. The resulting
models effectively generate punctuation across languages,
as necessary for the development and test data conditions.

We also note the dependency between sentence end punc-
tuation (period, question mark) with the first word of the sen-
tence. To model this dependency during training, we shift
sentence final punctuation marks to before the first word of
the sentence. As a post-processing step we shift the sen-
tence leading punctuation marks back to the end of each sen-
tence, where we consider also mid-utterance end-punctuation
marks as sentence boundaries.

4.3. Number Handling

We pre-process the source and target training data using
number processing tools developed for the GALE-Rosetta
consortium. Chinese numbers are identified by considering
character context within the source sentence since numeric
characters in Chinese are often combined with other charac-
ters to produce new (non-numeric) words. Words that con-
tain at least one Chinese character are split into their com-
ponent characters. The surrounding characters typically pro-

vide valuable information as to the meaning of the surface
word form. The presence of quantifier characters typically
defines a word as a numeric entity and warrants splitting the
word into its numeric and quantifier component. We do not
tag the Chinese character for one, as it is heavily used as de-
terminer.

We paid special attention to timing expressions. We used
the Chinese¹ (literally “point”) character to split words into
multiple fragments. If the fragments surrounding the point
can be analyzed as numbers using the method above then
we confirm the split. We find that several unknown surface
word forms in the development data can be broken down into
known numeric forms using this approach. We also utilize
the point marker to influence translation decisions, convert-
ing numbers in 24-hr notation to 12 hour notation. We also
converted numeric digits to words to match the development
data references.

Chinese Literal Translation
AÛ¹ 14 point two
$¹	A two point 30 two thirty
�AÛ¹ 24 midnight
~�KA - 10 %
Aà - more than ten

Table 3: Examples of split and tagged expressions.

Source and target numerical expressions are tagged with
a special left-hand-side production marker “CD”, producing
a number tagged bilingual corpus. Discarding all sentence
pairs where there is a mismatch in the number of tags, we
add the tagged corpus to the original untagged corpus, and
build our translation and n-gram language models on this
combined data-set. This combination mitigates the impact
of tagging errors, while the n-gram language model should
give preference towards tagged sequences. Our decoder is
able to recognize tagged entities and ensures that the lan-
guage model is applied over the tag when a derivation uses a
tag-based rule.

4.4. Tokenization

In order to generate target translations compatible with the
tokenization (use of apostrophes to conjoin words like “I’m”)
present in the development data, we tokenize (split) target
surface forms that include apostrophes during training. As a
post-processing step we conjoin words that have been split
across the apostrophe. We sometimes encounter words in the
translation output that have been generated without the sub-
ject in the apostrophe. In these cases, we simply add the most
commonly occurring subject form back into the translation.

5. Empirical Evaluation
We evaluate our work on the IWSLT-06 test data track with
the goal of judging improvements in translation quality due

to our data processing approaches as well as syntax over hi-
erarchy and the purely phrase based approach.

5.1. Decoder Settings

We perform our experiments using the decoder implementa-
tion described in [7] and use Pharaoh from [2] as the base-
line phrase based implementation. Pharaoh parameters are
trained following the instructions for baseline generation in
the NAACL-MT06 Shared Task.

To speed up the decoding process, we limit the source
span of non-glue based rule applications to maximally 8
words, and discard chart items that differ from the shortest
derivation chart item in the same cell by more than 1 rule.
We prune items within the same production category, propa-
gating a maximum of 200 chart items falling within a prob-
abilistic beam of 0.8. We do not prune across production
nonterminal categories.

5.2. System Runtime

Translating the 489 sentence development set or the 500 sen-
tence test set on a 3GHz processor (producing a 1000-best
list of unique translations per sentence) takes approximately
6 minutes for the hierarchical version and 50 minutes for the
syntax-augmented version of our system. Training initial lex-
ical phrases takes approximately 30 minutes, and rule extrac-
tion takes another 30 minutes.

5.3. Processing Evaluation

Processing Dev IBM-BLEU Test IBM-BLEU
TrainLowerCase 22.04 (23.91) 19.16 (21.55)
TrainTrueCase 22.47 (24.05) 19.23 (20.48)

SmartCase 23.50 (25.17) 20.04 (21.76)

Table 4: Comparison of different case-handling methods us-
ing the syntax-augmented translation system evaluated on
the official case- and punctuation-sensitive IBM-BLEU met-
ric. The numbers in parentheses indicate the IBM-BLEU
score when case (but not punctuation) is ignored.

We compared our case handling method “SmartCase”
against the commonly used methods of “TrainLowerCase”;
training and translating in lower-case and employing a true-
caser in a post-processing step (using interACT’s internal
true-caser)—and “TrainTrueCase”; keeping all training data
in its original case and upper-casing translation output sen-
tences’ first-words if they are not upper-cased already. Table
4 gives the experimental results on the ‘devset4’ develop-
ment set, on which MER training was performed, as well as
the IWSLT-06 test set.

While “TrainTrueCase” slightly outperforms “TrainLow-
erCase”, our “SmartCase” approach significantly outper-
forms both of these traditional approaches. Interestingly,
even when ignoring case during the evaluation, “SmartCase”

outperforms “TrainLowerCase”, suggesting that segregat-
ing upper and lower-case words and the resulting more re-
fined translation model overcomes the impact of mis-casing
beginning-of-sentence words in the training data.

5.4. Baseline Comparison and Impact of Syntax

Rules Dev IBM-BLEU Test IBM-BLEU
Pharaoh 23.2 19.3

Chiang-sim 21.25 18.08
SAMT 23.50 20.04

Table 5: Comparison of translation-models system using
“SmartCase”, evaluated on the official case and punctuation
sensitive IBM-BLEU metric.

In table 5, we compare “Pharaoh”, a freely available
state-of-the art phrase-based system trained on the same data
with the same pre- and post-processing applied as for our
system; “Chiang-sim”, our decoder using a [1] style purely-
hierarchical rule set; and finally “SAMT”, our decoder using
the fully-syntactic rule set. While our system’s hierarchical
variant performs poorly w.r.t. the external phrase-based base-
line, lacking nearly two BLEU points on the development
and 0.7 BLEU points on the actual test data, our syntax-
augmented system outperforms the baseline by 0.3 BLEU
points on the development and 0.7 BLEU points on the test
set. Also, one can clearly see the impact of using syntax vs.
hierarchical rules within our decoding framework.

6. Discussion

Our work demonstrates the potential for syntax augmented
models in the speech transcription translation task. While our
decoder still makes search errors as evidenced by the results
of the hierarchical model, the introduction of syntax model-
ing does improve system performance. The IWSLT-06 task
provides a rapid development environment for syntax based
systems, allowing us to take advantage of decoder constraints
that can cover whole source sentences while still generating
translations efficiently.

We showed how to take advantage of simple, but effec-
tive case handling, in order to build low perplexity translation
models, yet still generating accurate case markings in trans-
lation output whose scores improve in case and punctuation
sensitive evaluation.

Our translation system is available open-
source under the GNU General Public License at:
www.cs.cmu.edu/˜zollmann/samt

7. Acknowledgments

This work was partly funded by the European Union (EU)
under the integrated project TC-Star (Grant number IST-
506738), and the interACT exchange fellowship.

8. References
[1] D. Chiang, “A hierarchical phrase-based model for sta-

tistical machine translation,” in Proc. of the Association
for Computational Linguistics, 2005.

[2] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-
based translation,” in Proc. of HLT/NAACL, Edomon-
ton, Canada, May 27-June 1 2003.

[3] F. Och and H. Ney, “The alignment template approach
to statistical machine translation,” Computational Lin-
guistics, 2004.

[4] M. Galley, M. Hopkins, K. Knight, and D. Marcu,
“Scalable inferences and training of context-rich syntax
translation models,” in Proceedings of NAACL-HLT,
2006.

[5] I. D. Melamed, “Statistical machine translation by pars-
ing.” in ACL, 2004, pp. 653–660.

[6] D. Marcu, W. Wang, A. Echihabi, and K. Knight,
“SPMT: Statistical Machine Translation with Syntac-
tified Target Language Phrases,” in Proceedings of
EMNLP, Sydney, 2006.

[7] A. Zollmann and A. Venugopal, “Syntax augmented
machine translation via chart parsing,” in NAACL 2006
- Workshop on statistical machine translation, New
York, 2006.

[8] C. M. D. Klein, “Accurate unlexicalized parsing,” in
Proceedings of ACL, 2003.

[9] F. J. Och, “Minimum error rate training in statistical
machine translation,” in Proc. of ACL, Sapporo, Japan,
July 6-7 2003.

[10] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
a method for automatic evaluation of machine transla-
tion.” in Proc. of ACL, 2002, pp. 311–318.

[11] M. Steedman, “Alternative quantifier scope in ccg,” in
Proceedings of ACL, 1999.

[12] P. Koehn, F. J. Och, and D. Marcu, “Pharaoh: A
beam search decoder for phrase-base statistical ma-
chine translation models,” in Proceedings of the Sixth
Confernence of the Association for Machine Transla-
tion in the Americas, Edomonton, Canada, May 27-
June 1 2004.

[13] A. Zollmann and A. Venugopal, “Syntax augmented
machine translation via chart parsing with inte-
grated language modelling,” in Technical report,
www.cs.cmu.edu/ zollmann/publications.html, 2006.

[14] J.-C. Chappelier and M. Rajman, “A generalized CYK
algorithm for parsing stochastic CFG,” in Proceedings
of Tabulation in Parsing and Deduction (TAPD’98),

Paris, 1998, pp. 133–137. [Online]. Available: cite-
seer.ist.psu.edu/chappelier98generalized.html

[15] A. Venugopal and S. Vogel, “Considerations in MCE
and MMI training for statistical machine translation,”
in Proceedings of the Tenth Conference of the Euro-
pean Association for Machine Translation (EAMT-05).
Budapest, Hungary: The European Association for Ma-
chine Translation, May 2005.

[16] D. M. W. Wang, K. Knight, “Capitalizing ma-
chine translation,” in Proceedings of the North
American Association for Computational Linguistics
(HLT/NAACL), 2006.

