
IN HUMAN-MEDIATED TRANSLATION
scenarios, a human interpreter translates
from either a spoken or a written repre-
sentation of a source language into a
target language. In the European
Parliament, for example, interpreters
simultaneously translate the speech of a
Spanish speaker into the languages of
the listeners. 

Sometimes, human interpreters can
also use additional textual information,
e.g., the manuscript of a speech, to
help improve their translation. In many
scenarios, it is desirable to have a tran-
script of the original speech along with
the simultaneous translations for archiv-
ing or publication purposes. Here, auto-
matic transcription systems can help in
lowering costs and the effort needed to
obtain such transcripts. Our work is

aimed at improving these automatic
transcription systems over the current
state-of-the-art systems, which are still
error prone.

Automatic speech recognition,
machine and speech translation

Automatic speech recognition (ASR)
is a pattern recognition problem with
the purpose of finding the word
sequence W that belongs to a given
audio recording of speech, the pattern
X . Due to the variability that is inherent
in human speech, this classification
process is often done with the help of
statistical models. Stating the ASR prob-
lem in terms of probability theory and
applying Bayes’ theorem to it leads to
the fundamental equation of speech
recognition

Ŵ = arg max
W

P(W |X )

= arg max
W

P(W)P(X |W )

P(X )

= arg max
W

P(W)P(X |W ). (1)

In other words, speech recognition
finds the most probable word sequence
Ŵ given the observed pattern X
extracted from the recorded speech. To
do so, the product of P(W )and P(X|W)

has to be maximized. This process is
usually called decoding or search, since
it can be interpreted as searching for
the best word sequence in the hypothe-
ses space of all possible sequences.

P(W ) is called the language model
(LM) and determines the prior probabili-
ty that the word sequence W is spoken.
P(X|W) is referred to as the acoustic
model (AM) and links the spoken words
to the acoustic manifestation of speech.

Machine translation (MT) is the
problem of automatically translating
text from a source language, let’s say
Spanish, to a target language, e.g.,
English. Current state-of-the-art systems
utilize statistical models to solve this
problem as well. Similar to the funda-
mental equation of speech recognition,
one can formulate the MT problem as

T̂ = arg max
T

P(T |S )

= arg max
T

P(T)P(S |T)

P(S )

= arg max
T

P(T)P(S |T). (2)

P(T ) again is called the (target) LM,
while P(S|T) is called the translation
model (TM). 

The AM is trained with the help of
manually transcribed speech data.
Similarly, the TM is trained on sample
translations produced by human inter-
preters. The LMs are estimated on large
amounts of monolingual text data. The
most widely used type of LM is the so
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called n-gram LM, with n usually in the
order of three (tri-gram LM) or four.
Here, the probability of a word
depends only on the history of the n–1
preceding words. However, today’s ASR
and MT systems are not perfect but
rather produce error prone output of
varying quality.

When we combine ASR with MT, we
get speech translation systems (STS) that
translate speech into a different lan-
guage.

Machine translation enhanced
automatic speech recognition

A straightforward approach to auto-
mate the transcription process in
human-mediated speech translation sce-
narios is to simply apply ASR to the
speech of the interpreters and speakers.
For the transcription of the translator’s
speech, however, additional knowledge
in the form of the source language that
is being translated is available and can
be used to improve the quality of the
speech recognition system. One way to
achieve this is to use MT to translate
these resources from the source into the
target language. The ASR system can
then be biased towards the knowledge
gained. We call the process of recogniz-
ing speech using a system that has been
improved in this way MT enhanced ASR
(MTEASR). 

Previous work in MTEASR consid-
ered the case of a written source lan-
guage representation as proposed in
1994 by Dymetman et al. and by
Brown et al. In the TransTalk project,
Dymetman and his colleagues
improved the automatic transcription of
a translator’s speech by rescoring the
ASR n -best lists (the n : most likely
hypotheses for a given utterance) with
a TM. Further, they used the TM to
dynamically create a sentence-based
vocabulary list to restrict the ASR
search space. Brown et al. introduced a
technique for applying the translation
model during decoding by combining
its probabilities with those of the LM.

Our work goes beyond the described
research by proposing an iterative sys-
tem that incorporates all knowledge
sources available for both—the source
and target language—into an integrated
system. Figure 1 depicts the overall
design in the case of a spoken source
language representation. In this sce-
nario, a Spanish talker’s speech is being
translated by a human interpreter into
English. At the same time, a Spanish
ASR system is transcribing the Spanish

speech, and an MT system is automati-
cally translating the result into English—
parallel to the human interpreter. The
automatic translation is used to improve
the automatic transcription of the inter-
preter. This transcript is then being
translated back into Spanish by an auto-
matic system. This translation is then in
turn used to adapt the recognition sys-
tem toward the Spanish speaker. Both
automatic transcriptions in parallel can
further be used to improve the MT sys-
tems, completing one cycle of our itera-
tive design. The now-improved tran-
scription of the Spanish speaker togeth-
er with the improved MT component
can be used to enter a new iteration of
improving all components.

Task and baseline
components

Task and data sets 
We performed our experiments in

the domain of basic tourist phrases as
they can be found, for example, in the
basic travel expression corpus (BTEC).
BTEC contains tourist phrases and
expressions that cover the basic needs
of a traveler as one would find them in
commercial phrase books. For develop-
ment and evaluation, we used two dif-
ferent data sets. On Data Set I, which
consists of 506 parallel Spanish and
English sentences, we evaluated several
basic adaptation techniques in the case
of a written source language represen-
tation. The sentences were each read

four times by a total of 12 different
speakers. After removing corrupted
recordings, 2,008 spoken utterances
amounting to 67 min of speech
remained. On Data Set II, we evaluated
our iterative system design in the case
of a written as well as in the case of a
spoken source language representation.
Data Set II consists of 500 parallel
English and Spanish sentences in form
and content close to BTEC. The sen-
tences were read twice. Ten percent of
the data was randomly selected as held-
out data for system parameter tuning.
Due to some flawed recordings, the
English data set contains 880 sentences,
while the Spanish data set consists of
900 sentences. The Spanish audio data
equals 45 min while the English equals
33 min of speech.

Speech recognition system
For the ASR experiments in this work,

we used the Janus recognition toolkit
(JRTk), featuring the Ibis single pass
decoder, named after the Egyptian god
of writing, reckoning, and learning. Ibis
is a time-synchronous decoder that,
unlike our earlier decoder, allows us to
apply full LM information at a very early
stage in the decoding process in a single
pass over the audio to be recognized.
IBIS generates word graphs as a result
of its search, which can be rescored
using a different LM than during decod-
ing and can be used to derive the n-
most likely recognition hypotheses. The
AMs of the English recognizer were

Fig. 1 MTEASR in case of a spoken source language representation
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trained on 180 h broadcast news data
and 96 h meeting data. The Spanish
system was trained on 112 h South
American speech data (mainly Mexican
and Costa Rican dialects) and 14 h
Castilian speech data. The back-off tri-
gram language models of the two
speech recognizers were trained on the
respective English/Spanish part of the
bilingual BTEC. The term “back off”
refers to the fact that, should the tri-
gram LM not directly contain the proba-
bility of a word given its two-word his-
tory, the probability is estimated on the
shorter history of the one or zero pre-
ceding words. Table 1 gives an
overview of the word error rate (WER)
on the two data sets along with the out-
of-vocabulary (OOV) rates and LM per-
plexities. The LM perplexity (PPL) can
be interpreted as the average number of
words from which the next word is
being chosen given the preceding
words. A lower PPL indicates an easier
choice for the recognizer. Thus, all
other things being equal, using an LM
with a lower PPL normally leads to a
lower WER. The comparison of the
WER between different languages is
complicated due to major differences in
the complexity on all linguistic levels.

However, the much higher English
WER on Data Set II compared to Data
Set I can be explained by the LM PPL
on Data Set II, which is approximately
four times higher.

Machine translation system
The Interactive systems Labs (ISL)

statistical MT system was used for the
English to Spanish and the Spanish to
English automatic translations. The
translation systems for both directions
were trained on the bilingual
Spanish/English BTEC. The ISL statisti-
cal MT system produces an n-best list
of translation hypotheses for a given
source sentence with the help of its
TM, target LM, and translation memory.
The translation memory searches for
each source sentence that has to be

translated for the closest matching
source sentence with regard to the edit
distance in the training corpus and
extracts it along with its translation.
The performance values of the base-
line MT systems on the two data sets
and the two conditions (written and
spoken source language representa-
tion) are listed in the following sec-
tions along with the (iterative) MTEASR
experiment results.

Basic adaptation techniques
In this section, we compare different

basic adaptation techniques for improv-
ing the performance of the system’s
main components on the basis of a writ-
ten source language representation. In
particular, we describe techniques to
adapt the ASR component using knowl-
edge provided by the MT component
and techniques to adapt the MT compo-
nent using knowledge derived from ASR.
The performance improvements on the
ASR are described in terms of WER and
were obtained by using the baseline MT
knowledge only. For the experiments on
the MT component the improved out-
put of the adapted ASR was used. The
MT performance improvements are
reported in the bilingual evaluation

understudy (BLEU) in respect to one
reference translation. The BLEU score
ranges from 0–100, whereas a transla-
tion that is identical to its reference
translation attains a score of 100. The
score is computed as the geometrical
mean of the n-gram precisions with n ∈
{1;2;3;4}, i.e., it measures the n-gram
cooccurrence between a given transla-
tion and one or more reference transla-
tions. All experiments in this section
were conducted on Data Set I.

ASR adaptation techniques

Hypothesis selection by rescoring
The n-best WER (nWER) found within

the English ASR 150-best lists (the lists of
the 150 best hypotheses for each sen-
tence to be recognized) of the baseline

system is 6.5% compared to 12.6% for the
first best result, thus indicating huge
potential for rescoring the ASR n-best
lists. In contrast, the best WER that can
be achieved on the 150-best MT list is
34.2%. However, when combining the n-
best lists of ASR and MT, the nWER
drops to 4.2%, which proves that com-
plementary information is given in the n-
best lists of both components. In fact, we
observed the best rescoring performance
when enriching the ASR 150-best list with
just the first best MT hypothesis.
Therefore, our reported rescoring results
refer to ASR n-best lists enriched in this
manner. The rescoring algorithm that we
applied computes new scores (negative
log probabilities) for each sentence by
adding up the weighted and normalized
TM score, LM score, and ASR score of
this sentence. In addition, the rescoring
algorithm uses word context classes: MT
monograms, trigrams, and complete MT
sentences. MT n-grams are n-grams
included in the respective MT n-best list;
MT sentences are defined in the same
manner. Whenever one of these word
context classes is found within an ASR
hypothesis by the rescoring algorithm,
the score of the hypothesis is improved
by a value specific to the respective word
context class. Parameter optimization was
done by manual gradient descent. The
resulting best system yielded a WER of
10.5%, which corresponds to a relative
error rate reduction of 16.7%. We found
that the MT monogram discounts have
the strongest influence on the success of
this approach, followed by the TM score.
This suggests that the MT is not very use-
ful in getting additional word context
information in the form of MT bigrams
and trigrams but very useful as a
provider for a bag of words that predicts
which words are going to be said by the
human translator. This approach offers a
successful way to apply MT knowledge
for ASR improvement without changing
the ASR system.

Cache language model
Since the monogram discounts have

such a great impact on the success of
the rescoring approach, it is desirable to
use this form of MT knowledge not
only after but during ASR decoding. In
our cache LM approach, we define the
members of the word-class monogram
in the same manner as above, but
instead of rescoring n-best lists, we now
modify the score of the ASR hypotheses
during decoding. The best performing
system yielded a WER of 10.4%, and

Table 1.  Word error rate, out-of-vocabulary rate, and LM perplexity
(PPL) of the baseline ASR systems

Data Set I Data Set II Data Set II 
—English —English —Spanish

WER (%) 12.6 20.4 17.2

OOV (%) 0.52 0.53 2.04

PPL 21.6 86.0 130.2
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therefore had a similar performance as
the rescoring approach although it lacks
the direct computation of the TM score.
This can be explained by the fact that
the expectation to find new, correct
hypotheses could be fulfilled: The
nWER for the Cache LM system output
was now 5.5% compared to 6.5% of the
baseline system.

Language model interpolation
In this experiment, the LM of the

baseline ASR system was interpolated
with a small LM computed on the trans-
lations found in the MT n-best lists. The
best system had a WER of 11.6%. The
LM interpolation approach uses MT
context information in the form of tri-
grams (and bigrams and monograms for
back-off). The reduction of WER is rela-
tively small when compared to the
reductions obtained with the rescoring
and cache LM approach. This can be
explained by the limited input of MT
context information. 

Combination of ASR adaptation techniques
The proposed ASR improvement

techniques apply different forms of MT
knowledge with varying success. For
this reason, we examined whether it is
possible to further increase recognition
accuracy by combining these tech-
niques. Table 2 gives an overview of the
WER accomplished with these different
combinations together with the WER of
previously  described basic techniques.

MT adaptation techniques
To improve the Spanish-to-English

MT system, we used the 150-best lists
produced by the “Hypothesis Selection
on Cache LM” approach. We tested
two techniques and their combination.
The results are summarized in Table 3.

As described above, the MT system
consists of an LM, a TM, and a transla-
tion memory. Our MT system did not
allow for the application of cache LMs
without the need for modifications.
Therefore, we limited ourselves to using
LM interpolation for improving the tar-
get LM with the results from the ASR.
For that purpose, we trained a small LM
on the ASR 150-best lists and interpolat-
ed it with the original LM. As a result,
the BLEU score increased to 53.4.

The TM computes phrase translation
probabilities regardless of the word
order. The word order of the translation
is therefore appointed by the LM and
translation memory. To retrain the MT
system, the ASR 150-best lists were

added several times to the original train-
ing data. The TM was then retrained,
first with the translation memory fixed
to the original training data and second
with the translation memory computed
over the complete training data. The
best BLEU scores were 42.1 and 70.2,
respectively.

In another step, we combined the
above described systems for LM interpola-
tion and retraining. The combination led
to an improvement of the BLEU scores for
the fixed and updated translation memory
to 54.2 and 84.7, respectively.

Document-driven 
iterative MTEASR

After examining and optimizing the
individual adaptation techniques sepa-
rately, we tested our iterative system on
Data Set II, first for the case that a writ-
ten representation of the target lan-
guage exists. For improving the ASR,
the cache LM approach as well as the
previously introduced combinations of
techniques were examined. For the MT
improvement, the combination of LM
interpolation and retraining was cho-
sen, on the one hand with a fixed
translation memory and on the other
hand with an updated memory. The
motivation for this was that, although
the MT system with the updated mem-
ory yielded a much higher perfor-
mance, complementary MT knowledge
that is valuable for further ASR
improvement is lost by using it. An
updated memory sees to it that, primar-
ily, the ASR hypotheses added to the
training data are selected as translation
hypotheses. As a result, only a slightly
changed ASR output of the preceding
iteration is used for ASR improvement
in the next iteration instead of new MT
hypotheses. For improving the ASR
component, the combination of rescor-
ing and cache LM in iteration 0 and the
combination of rescoring, cache LM,
and interpolated LM in higher iterations
yielded the best results. The better per-

formance resulting from the additional
use of LM interpolation after iteration 0
is due to the improved MT context
information. For MT improvement, it
turned out that it is better to work with
a fixed translation memory. The final
WER was 1% worse with the updated
translation memory. No significant
change in recognition accuracy was
observed after one iteration. Figure 2
gives an overview on the components
of our final iterative system design
along with the respective performance
values. With the iterative approach, we
were able to reduce the WER of the
English baseline ASR system from
20.4% to 13.1%.

Speech-driven 
iterative MTEASR

Experiments and results
Our final iterative design lifts the

constraint of a textual representation of
the source language by applying an ASR
system to the source language speech.
The same combinations of adaptation
techniques as for the document-driven
case yielded the best results. It was suf-
ficient to improve the MT components
just once within the iterative system
design for gaining best results in speech
recognition accuracy (for both involved
ASR systems), just as in the document
driven case. Figure 3 gives an overview
of the components of our final speech
driven iterative system design along
with the respective performance values.
The WER of the English ASR system was
reduced from 20.4% to 14.3%. This is a
relative reduction of 29.9%. The WER of
the Spanish ASR of 17.2% was reduced
by 20.9% relative to 13.6%. This smaller
improvement in recognition accuracy
compared to the improvement of the
English ASR may be explained by the
fact that Spanish is morphologically
more complex than English. In iteration
0, the BLEU score of the Spanish-to-
English MT system is 15.1%, relatively

Table 2.  Comparison of ASR
improvement techniques.
Technique WER

Baseline ASR 12.6
LM Interpolation 11.6
Hypothesis Selection (on Baseline) 10.5
Cache LM 10.4
Cache and Interpolated LM 10.1
Hypothesis Selection on Cache and 

Interpolated LM 9.7
Hypothesis Selection on Cache LM 9.4

Table 3.  Comparison of MT
improvement techniques.
Technique BLEU

Baseline MT 40.4
LM Interpolation 53.4
Updated Translation Memory

– Retraining 70.2
– Combination 84.7

Fixed Translation Memory
– Retraining 42.1
– Combination 54.2
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worse than in the document-driven
case. This results from the fact that the
Spanish source sentences, which are
used for translation, contain more noise
due to recognition errors. In this con-
text, it should be noted that this degra-
dation in MT performance is of approxi-
mately the same magnitude as the WER
of the Spanish input used for translation,
i.e., it is of approximately the same
magnitude as the WER of the Spanish
baseline system. The degradation in MT

performance leads to a smaller improve-
ment of the English ASR system com-
pared to the document-driven case.
However, the loss in MT performance
does not lead to a degradation in
English speech recognition accuracy of
the same magnitude; compared to the
document-driven case, the WER of the
English ASR system is only 9.8%, rela-
tively higher. Figure 4 shows a detailed
comparison of the performance of the
English ASR system in the document dri-

ven and the speech driven case. Even
though the gain in recognition accuracy
is already remarkably high in both
cases, without applying any iteration, a
still significant gain in performance is to
be observed in the first iteration.

Conclusions
In this article, we introduced an

iterative system for improving speech
recognition in the context of human-
mediated translation scenarios. In con-
trast to related work conducted in this
field, we included scenarios in which
only spoken language representations
are available. One key feature of our
iterative system is that all involved sys-
tem components, ASR as well as MT,
are improved. Particularly in the con-
text of a spoken source language rep-
resentation, not only is the target lan-
guage ASR automatically improved but
so is the source language ASR. Using
Spanish as the source language and
English as the target language, we
were able to reduce the WER of the
English ASR by 35.8% when given a
written-source language representa-
tion. Given a spoken-source language
representation, we achieved a relative
WER reduction of 29.9% for English
and 20.9% for Spanish. This iterative
system design also allows for the
incorporation of knowledge provided
by not just one audio stream in anoth-
er language but by many. Only mini-
mal modifications of the applied adap-
tation techniques would be necessary
for such a scenario. The adaptation of
the cache LM approach as well as the
LM interpolation (for ASR and MT
improvement) and MT retraining can
be done by including all MT/ASR n-
best lists of the preceding MT/ASR sys-
tems in the iterative cycle. The ASR
rescoring algorithm can be extended to
allow for several TM scores provided
by several MT systems with different
target languages.
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Fig. 4 Detailed comparison of the document- and speech-driven case
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