Improving the ISL System by using results from commercial systems

Jürgen Reichert, Muntsin Kolss Universität Karlsruhe

TC-STAR OpenLab, Trento, Mar 30-Apr 2, 2006

Overview

- The ISL statistical machine translation system
 - STTK developed at CMU/UKA
 - Phrase Translation
 - Decoding
 - OpenLab shared task T1
- System combination with commercial systems

Phrase Translation Approaches

- Train word alignment model and extract phrase-tophrase translations from Viterbi path
 - IBM model 4 alignment
 - HMM alignment
 - Bilingual Bracketing
- Phrase translation models
 - Integrated segmentation and alignment (ISA)
 - Phrase Pair Extraction via full (constrained) Sentence Alignment (PESA)

30.03.2006

Phrase Extraction via Sentence Alignment

Phrase Extraction via Sentence Alignment

- Calculate modified IBM1 word alignment: don't sum over words in 'forbidden' areas

$$\Pr_{(i_1,i_2)}(\vec{t} \mid \vec{s}) = \prod_{j=1}^{j_1-1} \left(\sum_{i_1 \notin (i_1...i_2)} \Pr(s_j \mid t_i) \right) \prod_{j=j_1}^{j_2} \left(\sum_{i \in (i_1...i_2)} \Pr(s_j \mid t_i) \right) \prod_{j=j_2+1}^{J} \left(\sum_{i_1 \notin (i_1...i_2)} \Pr(s_j \mid t_i) \right)$$

- $Pr(s_j | t_j)$ are normalized over columns, i.e.

$$\sum_{i=1}^{I} \Pr(s_j \mid t_i) = 1$$

- Select target phrase boundaries which maximize sentence alignment probability

$$(i_1, i_2) = \operatorname{argmax}_{(i_1, i_2)} \{ \operatorname{Pr}_{(i_1, i_2)}(s|t) \}$$

ISL Phrase Translation

- Use all translation candidates with scores close to the best one
- Looking from both sides
 - calculate alignment from both sides
 - alignment in reverse direction
 - Interpolation factor tuned on development set
- On-the-fly phrase extraction
 - use suffix array to index source part of corpus
 - Space efficient
 - Search requires binary search
 - Finds n-grams up to any n, within sentence boundaries

Phrase Translation Probabilities

- Most long phrases are seen only once or twice, no good statistics possible
- Want to have phrase translation probabilities close to word translation probabilities
- Use multiple lexical scores as word and phrase translation probabilities:
 - forward and reverse IBM1 at phrase level
 - forward and reverse IBM1 at sentence level
 - relative phrase frequencies
 - can use any statistical lexicon: IBM1-4, HMM, …

Knowledge Sources for Decoding

Lexical information

- Statistical lexicon
- Manual lexicon
- Phrase translations
- Named entities
- Language model: standard n-gram
- Position alignment model for word reordering
- Word and phrase count models
- Word fertilities (e.g. from GIZA++)
- Minimum error training (MER) for optimizing model scaling factors

Decoding

Build translation lattice

- Run left-to-right over source sentence
- Search for matching phrases between source sentence and transducer
- For each translation, insert edges into lattice
- Lattice input: run over all source lattice edges

First-best search

- Run left-to-right over lattice
- Apply language model
- Combine translation model score and language model score
- Recombine and prune hypotheses
- At sentence end, add sentence length model score
- Trace back best hypothesis (or n-best hypotheses)

Reordering and Pruning

- Word and phrase reordering within a given window
 - From first un-translated source word next k positions
 - Window length 1: monotone decoding
 - Restrict total number of reordering (typically 3 per 10 words)
- Recombination and pruning of hypotheses
 - Of two hypothesis, keep only better one if no future information can switch their ranking
 - Example: last two word are the same for both hypotheses when a 3gram LM is used
 - beam search: remove hypotheses which are worse than best hypothesis by a factor k

Evaluation Data and Training

- Training data
 - Spanish/English EPPS: provided T1 corpus, 35? million words
- Preprocessing
 - Some rule-based translation of number and date expressions
 - Some disfluency cleaning (de-stuttering etc.)
 - Tokenization (punctuation marks), lowercasing
 - Splitting of long sentences, limit sentence length

Postprocessing

- Remove or keep untranslated words
- Correct punctuation
- Mixed Case

Sentence Splitting

- Split long training sentences
 - Improved lexical probabilities
 - Runtime
- Define split points in source and target sentence
 - punctuation marks, brackets
- Choosing split points
 - calculate p_{not_split} = (source sentence | target sentence)
 - calculate p_{split} = p(source left | target left) * p(splitp left | splitp right) *p(source right | target right)
 - in each iteration, re-calculate lexicon and split best N sentence pairs

Combining the ISL system with commercial systems

- ISL system is phrase-based statistical machine translation system
- Commercial systems usually very different from SMT, e.g. grammar/rule based
- Subjective evaluation: comparable translation quality, even though worse when worse NIST/Bleu scores
- Can SMT system profit from this/be improved?

Results, individual systems

T1, Dev-Set	NIST	BLEU	NIST _{CS}	BLEU _{CS}
UKA/ISL	10.4682	0.5356	10.2179	0.5154
Commercial system 6	9.5855	0.4789	9.5747	0.4818
Commercial system 1	9.4589	0.4587	9.4088	0.4526
Commercial system 7	9.4511	0.4584	9.4008	0.4523
Commercial system 3	9.3926	0.4570	9.3785	0.4521
Commercial system 5	9.3744	0.4551	9.3739	0.4516
Commercial system 4	8.4240	0.4033	8.4080	0.4002
Commercial system 2	8.1513	0.3491	8.1450	0.3450

CS = case sensitive

Results, individual systems

T1, Test-Set	NIST	BLEU	NIST _{CS}	BLEU _{CS}
UKA/ISL	10.3844	0.5272	10.1403	0.5071
Commercial system 6	9.5608	0.4731	9.5589	0.4701
Commercial system 3	9.4699	0.4570	9.4482	0.4534
Commercial system 5	9.4519	0.4573	9.4335	0.4539
Commercial system 1	9.3338	0.4439	9.2471	0.4342
Commercial system 7	9.3268	0.4437	9.2412	0.4341
Commercial system 4	8.4497	0.4040	8.4150	0.3995
Commercial system 2	8.3189	0.3529	8.2639	0.3468

CS = case sensitive

System selection at the sentence level

- Translate training data by all systems
- Calculate different confidence measures for each utterance
- Calculate NIST/Bleu score for each sentence
- Train classifier (class: best system, parameter vector (confidence measures)
- Translate test sentence by all systems
- Trained classifier selects "best" hypothesis

30.03.2006

Oracle system combination at the sentence level

What is the best we can reach?

Number of systems	NIST optimized		Bleu optimized	
	NIST	BLEU	NIST	BLEU
N=1	NIST=10.8407	BLEU=0.5683	NIST=10.7411	BLEU=0.5694
N=3	NIST=11.0298	BLEU=0.5817	NIST=10.8944	BLEU=0.5859
N=7	NIST=11.1092	BLEU=0.5880	NIST=10.9647	BLEU=0.5931

Oracle system combination at the sentence level

Number of systems	NIST optimized	Bleu optimized
N=1	Systems 0 : 537 counts	Systems 0 : 531 counts
	Systems 1 : 303 counts	Systems 1 : 309 counts
N=3	Systems 0 : 418 counts	Systems 0 : 413 counts
	Systems 1 : 185 counts	Systems 1 : 186 counts
	Systems 2 : 123 counts	Systems 2 : 119 counts
	Systems 3 : 114 counts	Systems 3 : 122 counts
N=7	Systems 0 : 395 counts	Systems 0 : 391 counts
	Systems 1 : 147 counts	Systems 1 : 155 counts
	Systems 2 : 97 counts	Systems 2 : 92 counts
	Systems 3 : 12 counts	Systems 3 : 11 counts
	Systems 4 : 94 counts	Systems 4 : 96 counts
	Systems 5 : 0 counts	Systems 5 : 0 counts
	Systems 6 : 57 counts	Systems 6 : 62 counts
	Systems 7 : 38 counts	Systems 7 : 33 counts

Selection criteria

- OOV estimation
 - Training corpus OOV, Cognate count (lowercase, real words) → not strong enough
- Sentence similarity (n-gram)
 - Generate pool of translated sentences with better scores than SMT system
 - For test sentence, look for best matching sentence in sentence pool
 - If similarity is higher than some threshold, use system which translated the best matching sentence
- Language model score
 - Normalized to sentence length
 - Threshold for each sentence length score
- Sentence length deviation

Results, combined systems

T1, Test-Set	NIST	BLEU
UKA/ISL (baseline)	10.3844	0.5272
All classifiers, 1+7 systems	10.4880	0.5401
Oracle, 1+7 systems	11.1092	0.5880

- NIST improvement 0.10
- Bleu improvement 0.013

Example sentences

593 3,818->8,042

src: Es una iniciativa que merece la pena.

ref This is a worthwhile initiative .

sys0: This is an initiative which deserves the penalty.

sys6: It is an initiative that is worth it.

610 9,049->9,722

src: A este fin hay que desarrollar tecnologías europeas de carbón limpio y captación de dióxido de carbono .

ref: To this end , we have to develop European clean carbon and carbon dioxide sequestering technologies .

sys0: To this end we must develop technologies of the European coal and apprehension clean carbon dioxide.

sys4: To this end one must develop European technologies of clean coal and carbon dioxide collecting.

Example sentences

38 3,833->7,791

src: El pueblo cubano no necesita payasos pasados de moda ni cómplices que le rían las gracias .

ref: The Cuban people do not need out-of-date clowns or accomplices to prop up the regime and pat it on the back .

sys0: The Cuban people not needs buffoons past fashion nor accomplices that you rían thanks.

sys1: The Cuban people do not need not even complicit old-fashioned clowns that laugh it the graces.

- 817 6,755->15,227
- src: Esta es una Comisión mejor .
- ref: This is a better Commission .
- sys0: This is a Commission that is better.
- sys1: This is a better Commission.

Further Work

- Train classifier on more training data
- Better post-processing of system output
- Adapt systems to domain
- More (commercial) systems
- More/different/better selection criteria
- Selection on phrase level

