

TC-Star, Review Workshop, Luxembourg, May 29, 2007

TC-Star: Statistical MT of Text and Speech

Hermann Ney

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI Computer Science Department RWTH Aachen University D-52056 Aachen, Germany

Contents

1	Approaches and Projects for MT	4
2	Statistical MT and TC-Star	8
3	TC-Star: Results	16
4	Other Projects and Evaluation Campaigns	27
5	Summary	32

TC-Star: Objectives

central topic: translation in a speech-to-speech translation task

- spoken language translation (SLT):
 - to significantly push the technology using statistical and data-driven techniques
 - to study the speech related problems in SLT and the tight integration of recognition and translation
- automatic speech recognition (ASR)
- text-to-speech synthesis (TTS)

1 Approaches and Projects for MT

area: machine translation of written language

- knowledge-based approaches
 - explicit rules (lexical, syntactic, semantic)
 - human effort to write down these rules
- memory-based translation:
 - goal: control of terminology
 - table of (source,target) phrase pairs
- example-based translation
 - (huge) database of (source,target) phrases
 - add generalization components
- statistical translation
- Systran:
 - (pragmatic) rules, in combination with dictionnary
 - optimized over several decades

Statistical MT

IBM (1989-1994):

- design and implementation of a statistical approach to MT
- based on positive experience in speech recognition

task:

- input: written language (unlimited domain, large vocabulary)
- Canadian Hansards: French \rightarrow English

experimental evaluation:

- performance criterion: human evaluation (fluency + adequacy)
- result: slightly worse (?) than Systran

tasks:

- speech input
- limited domains:
 - travelling, tourism, appointment scheduling
 - vocabulary size: 10000 words
 - language pairs: Chinese, Japanese, German, ... \leftrightarrow English

examples:

- C-Star consortium
- German BMBF: Verbmobil
- European: Eutrans, Nespole!, PF-Star, LC-Star, ...

automatic evaluation measures:

- WER/PER and BLEU/NIST are widely accepted
- allow competitive evaluations (helpful for progress!)

Challenges for TC-Star

- work on a real-life task:
 - unlimited domain
 - large vocabulary
- speech input:
 - cope with disfluencies
 - handle recognition errors
- sentence segmentation
- reasonable performance

2 Statistical MT and TC-Star

Bayes decision rule:

$$F
ightarrow \hat{E} \, = \, rg \max_{E} \left\{ p(E) \cdot p(F|E)
ight\}$$

- distributions p(E) and p(F|E):
 - are unknown and must be learned
 - complex: distribution over strings of symbols
 - using them directly not possible (sparse data problem)!
- therefore: introduce (simple) structures by decomposition into smaller 'units'
 - that are easier to learn
 - and hopefully capture some true dependencies in the data
- example: ALIGNMENTS of words and positions: bilingual correspondences between words (rather than sentences) (counteracts sparse data and supports generalization capabilities)

Example of Alignment (Canadian Hansards)

10

possible phrase pairs:

impossible phrase pair:

Translation Using Bilingual Phrases

segmentation into two-dim. 'blocks' with constraints:

no empty phrases, no gaps and no overlaps

operations with interdependencies:

- find segment boundaries
- allow re-ordering in target language
- find most 'plausible' sentence

similar to: memory-based and example-based translation

- phrase-based approaches and extensions
 - extraction of phrase pairs, weighted FST, ...
 - estimation of phrase table probabilities
- improved alignment methods
- log-linear combination of models (scoring of competing hypotheses)
- use of morphosyntax (verb forms, numerus, noun/adjective,...)
- language modelling (neural net, sentence level, ...)
- word and phrase re-ordering (local re-ordering, shallow parsing, MaxEnt for phrases)
- generation (search): efficiency is crucial

- system combination for SLT
 - generate improved output from several MT engines
 - problem: word re-ordering
- interface ASR-SLT:
 - effect of word recognition errors
 - pass on ambiguities of ASR
- sentence segmentation

- public software
- software infrastructure for evaluation (UIMA)
- steady progress measured in yearly evaluations
- participation in international campaigns

domain: EPPS = European Parliament Plenary Sessions

Training data:

- Sentence-aligned speeches and their translations
- Final text editions: from April 1996 to May 2006:
 - April 1996 September 2004
 - December 2004 May 2005
 - December 2005 May 2006
- Verbatim transcriptions: from May 2004 to January 2006

Evaluation data 2007:

3 hours for each task (June-July 2006)

TC-Star participants:

- IBM: IBM Research Yorktown Heights
- IRST: ITC-IRST Trento
- LIMSI: CNRS Paris
- UKA: University of Karlsruhe (jointly with CMU)
- UPC: Universidad Politecnica de Catalunya
- RWTH: RWTH Aachen University

external participants

automatic measures based on single or multiple reference translations:

- WER = Word Error Rate (as in speech recognition): Levenshtein (edit) distance
- PER = Position independent word Error Rate (RWTH): ignore word order and count word errors
- BLEU = 'Bilingual Evaluation Understudy' (IBM) accuracy measure: geometric mean of n-gram precision + brevity penalty
- NIST = NIST variant of BLEU accuracy measure: arithmetic mean of n-gram precision + brevity penalty

remark: these automatic measures correlate with human judgement (= adequacy + fluency)

three types of input to translation:

- ASR: (erroneous) recognizer output
- verbatim: correct transcription
- text: final text edition (after removing effects of spoken language: false starts, hesitations, ...)

best results (system combination) of evaluation 2007:

Input	BLEU [%]	PER [%]	WER [%]
ASR (WER = 5.9%)	44.8	30.4	43.1
Verbatim	53.5	25.8	35.5
Text	53.6	26.7	37.2

observations:

- good performance:
 - BLEU: close to 50%
 - PER: close to 70%
- fairly good correlation
 between adequacy/fluency (human) and BLEU (automatic)
- degradation:

from text to verbatim: no or small from verbatim to ASR: \triangle PER corresponds to ASR errors

measure improvements over time on the 2007 eval data:

- 2004: initial system
- 2005: first evaluation
- 2006: second evaluation
- 2007: third evaluation
- 2007: system combination

experiments: relative improvement in BLEU by 40-60%

RWTH System over Time

translation performance: BLEU[%] and relative improvment [%]

	S to E			E to S		C to E		
	EPPS		CORTES					
	BLEU	impr.	BLEU	impr.	BLEU	impr.	BLEU	impr.
2004	38.6	—	33.3	—	33.3	-	15.1	-
2005	47.8	23.8	40.6	21.9	46.1	38.4	—	—
2006	48.6	25.9	41.2	23.7	49.8	49.5	—	—
2007	51.2	32.6	44.6	33.9	52.5	57.7	25.3	67.5
2007 SysComb	53.6	38.8	47.2	41.7	55.2	65.8		-

Source	Yo me ciño al texto que usted ha presentado, especial- mente
2005	I am the text that you have tabled, especially
2006	I am the text that you presented, in particular
2007	I am holding on to the text that you have presented, especially
SysComb	I am limiting myself to the text that you have presented, especially
Reference	I am limiting myself to the text you submitted, especially

Source	han suscrito acuerdos con el Gobierno español para un uso de las lenguas cooficiales de España en sus actividades.
2005	have signed agreements with the Spanish Government to use of languages citizens of Spain in its activities.
2006	have signed agreements with the Spanish Government for a use of the languages means of Spain in its activities.
2007	have signed agreements with the Spanish Government for a use of Spain's co-official languages in their activities.
SysComb	have signed agreements with the Spanish Government for a use of the co-official languages of Spain in their activities.
Reference	signed agreements with the Spanish Government concerning the use of Spain's co-official languages in their activities.

TC-Star, Luxembourg, May 29, 2007

IWSLT: Int. Workshop on Spoken Language Translation (organized by C-Star consortium)

task:

- input: SPOKEN language
- travelling and tourism: vocab.size = 10000 words
- language pairs: Chinese, Japanese, Arabic \leftrightarrow English
- performance criterion: WER/PER, BLEU/NIST and human evaluation

experimental results (IWSLT 2006): best performance by TC-Star systems

28

GALE: global autonomous language exploitation

- tasks: speech recognition, language translation, information extraction
- input: speech and text
- languages: Arabic, Chinese and English
- speech: broadcast news and conversations text: newswire and newsgroup
- output: result of distillation (= information extraction)

approach:

- three teams: IBM, BBN, SRI
- data and corpora: LDC
- each team: fully-fledged system with all components
- regular evaluations

NIST MT Evaluation

NIST MT evaluation:

- written text
- Arabic and Chinese
- public evaluation
- measure: BLEU

Rank	Chinese NIST-06	BLEU[%]	NIST	GALE
		Average	(65%)	(35%)
1	Information Sciences Institute	27.0	33.9	14.1
2	Google	26.7	33.2	14.7
3	Language Weaver	25.9	32.8	13.0
4	RWTH Aachen University	23.8	30.2	11.9
5	Institute of Computing Technology, CAS, Beijing	23.1	29.1	11.9
6 #	University of Edinburgh	22.6	28.3	12.0
7	BBN Technologies	22.2	27.8	11.7
8	National Research Council Canada	22.2	27.6	11.9
9	ITC-irst	22.1	27.5	11.9
10	UMD-JHU	21.6	27.0	11.4
11	NTT, Japan	20.8	26.0	11.2
12	NICT, Japan	19.8	24.5	11.1
13	Carnegie Mellon University	19.3	23.5	11.4
14	Microsoft Research	18.5	23.1	9.7
15	Queen Mary University of London	18.1	22.8	9.4
16	HKUST	17.0	20.8	9.8
17	Universitat Politecnica de Catalunya	16.8	20.7	9.3
18	University of Pennsylvania	16.0	19.6	9.2
19 *	Institute of Automation, CAS, Beijing	15.5	18.9	9.0
20	Institute of Software, CAS, Beijing	14.8	18.2	8.6
21	Language Computer	14.7	18.1	8.1
22	Xiamen University, Fujian, China	12.9	15.8	7.5
23 #	Lingua Technologies Inc., Canada	11.1	13.4	6.6
24 #	KCSL Inc., Canada	4.0	5.1	2.0
25	Kansas State University	3.4	4.0	2.2

Rank	Arabic NIST-06	BLEU[%]	NIST	GALE
		Average	(65%)	(35%)
1	Google	34.3	42.8	18.3
2 #	Applications Technology Inc.	31.9	38.7	19.2
3	IBM	31.6	39.5	16.7
4	Information Sciences Institute	31.4	39.1	17.1
5	RWTH Aachen University	31.2	39.1	16.4
6 *	SRI	30.0	37.4	16.1
7	Language Weaver	29.9	37.4	15.9
8 *	National Research Council Canada	29.7	37.5	15.2
9	NTT, Japan	29.3	36.8	15.3
10	BBN Technologies	29.1	36.9	14.6
11	ITC-irst	27.7	34.7	14.8
12	Sakhr Software Co.	27.2	33.0	16.5
13	Carnegie Mellon University	26.8	33.7	13.9
14	UMD-JHU	26.5	33.3	13.7
15 #	University of Edinburgh	26.1	33.0	13.1
16	Queen Mary University of London	23.6	29.0	13.5
17	NICT, Japan	23.3	29.3	11.9
18	Language Computer	22.1	27.8	11.3
19	Universitat Politecnica de Catalunya	21.9	27.4	11.5
20	Columbia University	19.4	24.7	9.6
21	University of California Berkeley	15.4	19.8	7.3
22	The American University in Cairo	12.2	15.3	6.4
23	Dublin City University	7.3	9.5	3.2
24 #	KCSL Inc., Canada	4.0	5.2	1.8

5 Summary

- task: real-life, unrestricted domain
- fully automatic systems for spoken language translation
- complete chain: ASR, SLT, TTS
 - automatic segmentation of speech
 - interfaces to ASR and TTS
- progress monitoring by regular evaluations
 - steady improvement over time
 - external participants
- other projects and evaluation campaigns:
 - IWSLT
 - DARPA GALE
 - NIST-MT
- TC-systems: state of the art no superior technology around

THE END

